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Introduction
Introduction
1.1 The Engineering of Complex Systems Based on Models

People as toolmakers have developed systems for thousands of years and have devel-
oped techniques for coordination of large efforts. In a timespan shorter than a single 
career, the complexity of systems and the pervasiveness of computers and software 
have increased so much that production of modern systems demands the application 
of a wide range of engineering and manufacturing disciplines. The many engineering 
and manufacturing specialties that must cooperate on a project no longer understand 
the other specialties. They often use different names, notations, and views of informa-
tion even when describing the same concept. Yet, the products of the many disci-
plines must work together to meet the needs of users and buyers of systems. They 
must perform as desired when all of the components are integrated and operated.

1.1.1 This Book
This book describes how to combine text descriptions and rigorous modeling to ana-
lyze and describe large or small complex systems. The systems engineering work 
begins with the needs of users, owners, and operators and with the realities of the 
marketplace.The systems engineering work transforms these needs into a description 
of a system architecture and design that specifies the components to be designed, 
implemented and integrated. The fundamental process for the engineering of systems 
is an optimization process. That process finds a near optimal solution for the system 
out of a multitude of possible solutions. The process produces rigorous descriptions 
of the near optimal solution by defining what the components are, what they must do, 
and how they interact to perform as a system. This book focuses on the technical 
engineering work of transforming needs to a near optimal system solution for com-
plex systems that require multiple engineering disciplines to do the work. The 
approach is a synthesis of proven systems engineering best practices with the rigor of 
information transformations. The basic abstractions and processes required are 
described. The resulting meta-process description for systems engineering work is 
highly tailorable to organization need and culture.

To develop any complex system, a team of engineers, working at the system 
level, must analyze the needs of the users, operators, and owners. The systems team 
must give to the many design, engineering, and manufacturing disciplines a rigorous 
17



Introduction
description and specification of the system and the components that are to be pro-
duced. These descriptions must be provided in the representations, terminology, and 
notations used by the different design disciplines. They must also be unambiguous, 
complete, and mutually consistent such that the components will integrate to provide 
the desired emergent behavior for the system. When the product is completed and 
offered for sale, its emergent behavior must match the needs of customers so well that 
they will choose to buy and use it. 

The systems team must also describe the emerging system to the interested 
stakeholders - management, marketing, users, owners, operators, and acquisition 
authorities. These stakeholders are the decision makers for funding development and 
for purchase of product or service. These system descriptions must effectively address 
the concerns of the stakeholders in form, language, and level of detail useful to them. 
These system descriptions will be less detailed than those provided to design, engi-
neering and manufacturing disciplines.

One thesis of this book is that modeling results in higher quality systems, 
designed and produced at lower cost and in a shorter time, with a better fit to the mar-
ket. A second thesis of the book is that with modeling the system specification can be 
executed to show what will occur and can be transformed efficiently and rigorously 
into the several different languages and forms useful to both the system stakeholders 
and to the design, engineering, and manufacturing disciplines. A third thesis of the 
book is that with the same modeling applied to systems engineering itself you get a 
well defined discipline, improved capability to train, and essential definitions needed 
for building automation and infrastructure for efficient and creative systems engineer-
ing. These definitions are consistent with the best practices and standards developed 
over many years and augment them with executable models.

There is a management role in the engineering of systems, to provide a systems 
view for scheduling and management of resources, and a systems view for the resolu-
tion of the technical issues that arise. This book discusses these management tasks to 
separate them clearly from the technical tasks of systems engineers. The major focus 
of the book, however, is on the technical work and how to accomplish this rigorously. 
Systems engineering management is described in detail in the selected references 
(Blanchard and Fabrycky 1990) and (Defense Systems Management College 1990).

1.1.2 Systems Engineering as a Discipline
The development of modern complex systems requires engineers from several disci-
plines and also engineering generalists. In some industries, such as aerospace, the 
engineers focusing on the front end definition of the system are called systems engi-
neers. This job function is taught as a separate discipline in a growing number of uni-
versities. In other businesses engineers with these front end responsibilities are called 
by many different names and their work may or may not be recognized as a distinct 
discipline. Recognized or not, it is a critically important because it:
18



Introduction
• Matches the product to the marketplace

• Defines the components so the designers can be design and built them

• Determines most of the design choices affecting system cost and performance

• Ensures that the components will integrate successfully and perform together 
as required

• Provides specifications free of errors, since errors are very expensive to correct 
in the latter stages of design and production.

It must, therefore, accurately reflect a total system design that is both feasible and 
effective in component design. In addition, the system design must be not only cor-
rect but also unambiguous. If not then the components will not integrate correctly and 
the desired emergent behavior will be compromised. Failure to do this work, up front, 
causes the system to cost more than was budgeted, miss its market window, and have 
an increased chance of marketplace product failure.

Where does system engineering end? Design of the components is the responsi-
bility of the engineering experts in the disciplines: mechanical engineering, software 
engineering, database engineering, civil engineering and the like. Implementation of 
these components is the responsibility of manufacturing, building construction, and 
others. Design of the total package of components including their interrelationships is 
the domain of the systems engineer. Of course what one company considers to be a 
component another treats as a system.

This book describes a process for combining rigorous modeling with text 
descriptions to analyze and describe:

1. user needs

2. the system to meet those needs, and

3. the components to be designed and built 

Following this process leads to a near optimal system solution. This fundamental pro-
cess for the engineering of complex systems is an optimization process. It finds a 
near-optimal solution out of a plethora of possible solutions. It produces rigorous 
descriptions of the near optimal solution by defining what the components are, what 
they must do, and how they interact as a system. The process draws on the best prac-
tices of systems engineers and combines these with modern modeling techniques. 
Together these produce a rigorous method by which to design complex systems.
19



Introduction
1.2 Importance of Engineering Complex Systems 

There are economic and technical changes sweeping the globe that make systems 
engineering critically important to the industrialized nations and their peoples. There 
is also a deadlock, an impasse, which the art of systems engineering faces and which 
presently limits its contributions.

1.2.1 Global Economic and Technical Change
In earlier times goods and payments passed across regulated national borders, but pro-
duction facilities, knowledge, and culture remained within those borders as a national 
competitive advantage. At present there is an almost instantaneous movement of 
ideas, information, key people, and capital across national borders. Productive capac-
ity can be quickly established anywhere there is an economic advantage. It is possible 
to have high technology, high productivity, high quality, and low wages (Schwab and 
Smadja 1994). This is a trans-national phenomenon. It is occurring across nations 
where regions are working together to define markets and make investment by inter-
national companies most attractive, (Thurow 1992), (Krugman 1994). Europe is mov-
ing toward a trading block. Hong Kong has embraced Shenzen and the Zhu River 
delta of China. Malaysia has become a world leading producer of semiconductors and 
is now discouraging labor intensive industry. Indonesia, Malaya, and Thailand are 
linking their cities of Medan, Penang, and Phuket. Taiwan, Japan and Korea are mov-
ing productive capacity to China and Vietnam. The United States and India are pro-
ducing software cooperatively.

To remain competitive global companies are relocating design and production 
wherever it is advantageous to produce goods and to maintain relationships for selling 
goods (Krugman 1994), (Ohmae 1995). Major global companies are increasingly 
opening their top management and boards of directors to candidates from all nations 
(Reich 1991). This is beginning to occur even in nationalistic Japanese companies and 
family oriented Chinese companies. Global businesses which do not follow these eco-
nomic imperatives are likely to wither. This is the information age and technology has 
shortened the time to cross oceans.

Span of National Control and Investment in National Advantage
The advanced industrialized nations can no more prevent the movement of design and 
production capability to other regions of the world than could the Luddites of England 
prevent replacement of their hand loom cottage industry in the early 1800’s by punch 
card automated looms. 

Nations and blocks of nations have the capacity to create an environment that 
encourages investment. Singapore provides an excellent example of investment strat-
egy, but not of individual freedoms (Sisodia 1992). The investment policies in the 
United States are less strategic (Porter 1992). One of the most critical investments for 
any nation is in the skills and industrial culture of its people (Reich 1990). The people, 
20



Introduction
unlike capital, information, patents, laboratories, design organizations, and produc-
tion facilities, remain located in the nation. The skill of the work force is a major 
attraction to investment. Investment produces the jobs for the people.

Some investments by a company or nation give it an unique advantage which 
establishes and maintains profitability even in the face of aggressive low cost com-
petitors. Such advantages have been called dis-equilibrium advantages, (Thurow 
1996). Education and infrastructure in systems engineering for the definition of com-
plex systems is such a dis-equilibrium advantage.

Importance of Systems Engineering
The development of new large complex systems with world sales potential is a major 
contribution to any economy. No nation can keep the production of parts within their 
borders if there is an economic advantage elsewhere. However, industrialized nations 
can keep the development of new complex systems within their borders if they have a 
preeminently qualified work force and infrastructure for defining competitive sys-
tems efficiently. Some parts will be sourced world wide and help open global mar-
kets. Most part manufacture, assembly, and integration can be kept within borders by 
the organization that creates the system. A few examples from just one industry are: 
the Boeing 777, the stealth bomber, the replacement American Airlines ticket reser-
vation system, and the FAA flight control system. Some of these examples were suc-
cesses and some were failures (Gibbs 1994). The successes provide downstream 
employment and job training experience for thousands of workers. The failures waste 
capital and human resource. Existing experience with successful complex systems, 
professional system engineering skill, and system engineering infrastructure have tre-
mendous positive downstream leverage on an economy.

However, there is a gap, a roadblock in attaining state-of-the-art systems engi-
neering skill levels and infrastructure.

1.3 The Gap 

The information which is critical to a modern system definition comes from users, 
operators, owners, marketing organizations, and procurement organizations. This 
information is often available only in informal, natural language, such as English. 
The language expresses needs to be met without referring to engineering concepts 
and terms. This is the systems engineering input.

The output from systems engineering is a set of specifications. These are dis-
seminated to a wide variety of support disciplines which need specific information in 
their own notations and views, available to them in their own computer based tools. 
Systems engineering information needs to be rigorously transformed to the multiple 
different models, notations and views of the downstream engineers who create 
designs.
21
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The Gap is the void between needs expressed in informal, natural language and 
component specifications described in the multiple engineering notations. To date this 
gap has been bridged by good systems engineering practices and by hard work. This 
work results in huge text documents detailing the component specifications for 
designers. Engineers in each downstream discipline must read and interpret the text, 
transform it into their own models and terminology, and then enter it into their com-
puter tools. They must remove the ambiguity and inconsistencies between what has 
been written and what they know will work correctly. Clearly, this process is time-
consuming and error-prone.

1.3.1 Closing the Gap
 Modeling can fill the gap. Modern technology now gives us desk top access to power-
ful computers and software which can provide modeling to fill the gap, reduce the 
effort to cross from needs to specifications, and increase rigor and correctness. 

Capture of the modeling information for modern complex systems is important 
both for productivity in the engineering work and for checking information for incon-
sistencies, omissions, and errors.

Prior Experience in Other Disciplines
 Similar gaps have existed in other fields including mechanical engineering, integrated 
circuit chip design, and software engineering. In some cases these gaps have been 
closed. Mechanical engineering is a good example of the evolutionary approach to 
filling the gap. Mechanical engineering is one of the oldest engineering disciplines 
and has addressed many of the problems now faced by the systems engineering. One 
of the major tasks of mechanical engineers is to specify the geometry of parts which 
are to be manufactured and assembled. These geometries are then analyzed to ensure 
that they will perform according to the requirements and that they can be manufac-
tured efficiently.

The traditional mechanical engineering technique to describe a part’s geometry 
was to use physical drawings. In the 1960’s computers and software tools began to be 
used to capture mechanical geometry information. However, these tools belonged 
exclusively to the mechanical engineers. The computerized drawings still had to be 
read and translated separately by other engineers performing analysis and simulation 
because their computer tools used for analysis could not exchange information with 
the mechanical design tools.

 The geometric specification of mechanical systems is now rigorously transmit-
ted and transformed among computer tools for design, analysis, and manufacturing. 
The numerous tools were originally developed independently with different assump-
tions about nature of geometry information. Integration of the tools was not possible 
until a language was developed which unambiguously described the required geome-
try. The Express language was chosen. It is semantically well defined and spans the 
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application of geometry. In addition standards have been developed and used to 
implement the seamless translation and transfer of information among tools for 
mechanical design, analysis, and manufacture. The STEP/PEDES standards for rep-
resenting geometry is one such standard. The value of which was demonstrated by 
projects developments such as the Boeing 777 aircraft, (Norris 1995).

When transistor design was first begun a single engineer could understand a cir-
cuit in its entirety. A gap developed as the circuits grew in complexity and then 
moved from discrete components into integrated circuit chips. The same level of 
attention to detailed design was needed as in the older component designs but, it grew 
beyond the scope of individual comprehension. To close the gap a new generation of 
design and analysis tools had to be built and a methodology for effective tool use had 
to be developed. Integrated circuit chips are now designed and simulated using 
VHDL or schematic capture and are transformed into geometric mask features for 
manufacture using standardized intermediate forms for the information. Well estab-
lished design rule standards define exactly how manufacturing foundries can accom-
modate the design and the circuit layout (Mead and Conway 1980).

Software engineering has closed a similar gap, only to have the gap reappear at 
a higher level. Assemblers and compilers were developed to close the initial gap 
between programmers and the computers with which they worked. This not only 
helped to ensure correct operation of their programs, it also took much of the drudg-
ery of programming out of the hands of humans and put it into the computer. This suf-
ficiently closed the initial gap. It reappeared, however, at a higher level. As 
computers grew more powerful and correspondingly software became more complex, 
the compilers and languages they supported were no longer sufficient to ensure cor-
rect operation.A new generation of tools have been developed to help close the new 
gap. In these tools software algorithms and structure are designed graphically and in 
higher level languages. These are compiled by rigorous transformation to the 
machine language needed by specific computer architectures. Data relationships are 
captured in information models which can be represented in graphically or symbolic 
language. The database schema can be generated from the models, (Premerlani and 
M.R. Blaha 1994, 1993). 

Closing the Gap in the Engineering of Complex Systems
The gap for the engineering of systems can be filled by extending the modeling tech-
niques that are applicable to the definition of systems described in this book. 

 Rigorous, executable models of behavior (what things do) and structure (how 
things are built) means the capture of system requirements and specifications in mod-
els that are computer executable and unambiguous. It is possible to use automatic 
transformations of the system models into exactly the views and notations needed by 
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the supporting engineering disciplines. This rigor cannot be obtained with non-execut-
able specifications written in natural language text alone. That is not to say that text is 
unimportant. It is used to accompany the models and provide explanations of them.

The tools for this work, however, as was the case for Mechanical Engineering, 
have been created by different laboratories and vendors and they cannot exchange 
information with one another. There is at present no agreed upon computer-executable 
description of the work to be done in systems engineering and of the information to be 
captured and transformed. Such standardized computer executable descriptions are 
essential for creation of an integrated tool environment.

The same modeling techniques that are applicable to system requirements and 
specification can be used to define the system engineering work to be done and the 
information to be captured and transformed at each step of the work. It is possible for 
the systems engineering profession to carefully define the process it uses, rigorously 
defining its accumulated best practices as a behavior for engineers. An executable 
meta-process model provides a framework for this definition. The information cap-
tured and transformed at each step of the meta-process can be represented in an exe-
cutable information model which captures the structure of data relationships. We will 
show how to use this meta-process not to drive engineers to perform their work in 
exactly the same way, but rather to tailor the methodologies, notations and views of 
choice by individual businesses and organizations.

Purposes of Modeling
Modeling is used to reduce the time and effort expended by engineers shortening the 
design cycle time. It is used to check the information for consistency and complete-
ness reducing the error rate. It is used to preserve the current engineering results for 
use during later maintenance, product upgrade, or product replacement efforts. It is 
used to describe unambiguously; every symbol and number such that each has one and 
only one meaning. The models ensure that at the end of the process all necessary 
information is available and correct.

Modeling in no way substitutes for creative engineering thinking and problem 
solving. Creativity and new solutions come from the engineers. Modeling reduces 
their manual work and improves accuracy.

1.4 Definitions

Words like science, engineering, system, context, structure, and behavior are widely 
used and understood. The specific interpretation of each word varies with the context 
in which it appears, the person seeing it and the disciplines using it. A few definitions 
are given to clarify these terms for their use in this book.
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1.4.1 Science
“Science is the branch of study that is concerned with the establishment or strictly 
with the quantifiable formulation of verifiable general laws chiefly by induction and 
hypothesis”. (Mirriam-Webster 1981)

Science carefully observes the behavior of things and creates quantitative laws 
that describe what things do under defined conditions. These laws are executable 
quantitative models. They can be evaluated by people or computers to get numbers 
that describe things and what the things do.

1.4.2 Engineering
“Engineering is the professional art of applying science to the optimum conversion of 
the resources of nature to benefit man.” The words engine and ingenious are derived 
from the same Latin root, ingenerare, meaning to create.”

“Engineering is an art requiring the judgement necessary to adapt knowledge to 
practical purposes, the imagination to conceive original solutions to problems, and 
the ability to predict performance and cost of new devices or processes.”

“Unlike the scientist the engineer is not free to select the problem that interests 
him; he must solve problems as they arise; his solutions must satisfy conflicting 
requirements. Usually efficiency costs money; safety adds to complexity; improved 
performance adds to weight. The engineering solution is the optimum solution, the 
end result that, taking many factors into account, is most desirable.” (The New Ency-
clopedia Britannica 1980)

Engineers solve real problems using the laws of science, executable models, to 
predict quantitatively the performance of alternative solutions to real problems in 
order to create new things that benefit people. It is a creative art to find better systems 
that better meet peoples needs. Quantitative modeling taken from the results of sci-
ence is the aid that engineers use. 

1.4.3 Model
“Model: A pattern of something to be made” (Mirriam-Webster 1981). 

A model describes the essential nature of a process or thing. They are not the 
thing itself. Models are validated only when they have been verified by observation 
and measurement under controlled conditions. Models are unambiguous, they use 
mathematics, graphic or symbolic languages that have one meaning only for the sym-
bols used. Natural languages like English do not qualify for modeling. The natural 
languages are essential for written explanations of the models.

1.4.4 System
“A system is a complex unity formed of many often diverse parts subject to a common 
plan or serving a common purpose.” (Mirriam-Webster 1981)
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A system is a thing built from many other things, components, which interact for 
a common purpose. If an engineer is to define a system he must describe its context, 
its behavior or purpose, and its structure

1.4.5 Behavior
“Behavior: The way in which an organism, organ, or substance acts, especially in 
response to a stimulus” (Mirriam-Webster 1981). 

When we describe the behavior of a system we will consider scenarios of its use 
under a variety of conditions and the systems response to the scenarios.The engineer 
must describe the system response to the external things under all possible conditions.

1.4.6 Structure
“Structure: Arrangement of parts, or of constituent particles, in a substance or body” 
(Mirriam-Webster 1981). 

The structure of a systems is the parts that it comprises and the relationships 
among them. The engineers must describe the structure of the system:

• A list of all the components that comprise it

• How the components are interconnected

• What portion of the total system behavior is carried out by each component

1.4.7 Context
“A context is the interrelated conditions in which something exists or occurs.” (Mir-
riam-Webster 1981)

A significant misconception about context is the assumption that the context is 
given in a particular problem and does not need to be analyzed in the art of finding a 
near optimal solution to the problem. Very often the most important aspects of the 
problem involve looking at alternatives in the context and evaluating them. 

1.4.8 Optimization
“Optimum: The best or most favorable degree, quantity, number” (Mirriam-Webster 
1981). 

It follows then that optimization is the process to achieve the most favorable 
degree. In systems design we need to consider optimization at two levels, context and 
system.

Context Optimization
• Analysis of alternatives in the context of the system

• Choice of a near optimal context for the problem
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System Optimization
• Analysis of alternatives in the structure of the system, what components may 

be used and what each component may do.

• Choice of a near optimal set of components and their individual behaviors, a 
design of the system

1.5 Basic Abstractions

There are a set of commonly used abstractions that people use to simplify the world 
around us. They are so familiar that we often do not consciously think about them as 
we use them and do not distinguish among them clearly as we speak or write about 
them. These are the same basic abstractions that are needed for modeling in the engi-
neering of complex systems. However, in modeling it is necessary to clearly define 
the abstractions and use symbols for them avoiding ambiguity of meaning.

Because these abstractions are basic, they appear in the many engineering disci-
plines and in languages used for software engineering, (Liskov 1981). Unfortunately 
the basic abstractions are called by different names, represented with different sym-
bols, and combined in different ways by the engineering disciplines and in the sup-
porting tools. These abstractions, their meanings or semantics, are the basis for both 
modeling in systems engineering and for automated translation of that information 
into the notations and views of other engineering disciplines.

1.5.1 Basic Abstractions Used with Structure

Things or Objects
Distinguishable things or objects are one of the most fundamental notions of human-
ity. There are several aspects of objects that are used to describe or specify them:

1. Name of the thing

2. All of the properties of the thing that are important for the problem of current 
interest

3. All of the tasks, actions or, functions, that are be performed by the thing for the 
problem of current interest

4. All of the inputs the object accepts and the outputs it generates

5. How to connect to the object (its interfaces)
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Parts Tree or Aggregation
Systems are often composed from other systems. Things are built from things. Aggre-
gation allows us to consider the thing as a unit, ignoring its parts, a vast simplification 
in thought. Alternatively it allows us to consider an object as an assembly of parts; to 
think about how it is built. A parts tree captures this information. When all of the parts 
are properly assembled the object is produced.

Interconnection
Since things are built from things, we must have a way to express how things relate to 
each other. We must be able to show which parts in an assembly are connected and 
which are not. Interconnection shows this and defines additional information about 
how the connection takes place and what interfaces are used.

Number
From infancy children are taught the abstraction of number and how to count. If we 
have many of a thing number lets us express how many in a rigorous way. When we 
learn arithmetic we have a set of rigorous logical rules that we can use to execute this 
abstraction and transform the information as we need.

Classification
Classification deals with the kinds of things that exist. It is a grouping abstraction 
based on shared properties. Classes can be broken down into subclasses and the sub-
classes into sub-subclasses The abstraction of class and classification tree is distinctly 
different from that of parts and parts tree.

•  The abstraction of parts describes how something is decomposed or assem-
bled. 

• The abstraction of class shows common properties or behavior of things. It rep-
resents alternatives that may be chosen and provides a means to find or index 
things

One may wish to select a pet by choosing among birds, fish, dogs, or cats. If the 
choice is a dog, is the dog a poodle, a labrador, or a terrier? These are class choices. 
The pet shop will probably be arranged with animals of any one class in a particular 
area. One finds a labrador by going to the dog section.

The distinction between parts of things and classes is often blurred in speech and 
in writing. Both abstractions are important and useful, and they need to be distin-
guished in any notation used to model systems.

Association
The abstractions Aggregation, Interconnection, and Classification are all referred to 
more generally as associations.
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1.5.2 Basic Abstractions used with Behavior
The basic abstractions used with behavior are functions and composition. While these 
may sound unfamiliar, they are commonly used by most people. A simple example 
will illustrate these abstractions. We will look at a behavior and then pull it apart into 
its basic components.

Consider the behavior of “Put out the milk for dinner” as though it was not intu-
itively obvious and had to be explained in detail. For example, imagine explaining it 
from the standpoint of a young child who does not know what to do or from that of a 
person from a primitive area who had never seen a modern kitchen.

“Put out the milk for dinner” is composed of other behaviors like: “Get glasses 
from the cupboard”, “Get milk bottle from the refrigerator”, “Pour milk into glasses, 
“Return milk bottle to the refrigerator”, and “Put glasses on the table”

Each of these behaviors involves one or more actions taking place. These 
actions are variously called work steps, methods, functions, or activities. Different 
words have been used to describe this abstraction which refers to work that trans-
forms things. In this discussion, we use function for this abstraction. The basis of this 
abstraction is the description of work which transforms things

In more formal language, a function is described in terms of inputs, outputs and 
a transform relation output to input. The function “Pour milk” has as inputs a bottle of 
milk and empty glasses. It has as outputs glasses filled with milk and a bottle from 
which milk has been removed.

Functions, taken by themselves, are not sufficient to describe behavior. There is 
an ordering to the functions. Some ordering is intrinsic; it is imposed by the reality of 
the world. In other cases the choice of order may not effect the desired transformation 
and can be chosen for convenience. It is often desirable to leave some of these alter-
native choices to designers.

In our example, “Get glasses” and “Get milk bottle” may be done in any order. 
“Get glasses” and “Get milk bottle” must both be completed before “Pour milk” can 
be done. “Get glasses” must precede “Put glasses”. “Pour milk” must precede 
“Return milk bottle”. “Pour milk” and “Put glasses” may be done in any order. 

Textual descriptions of ordering and timing relationships get to be very confus-
ing for behaviors of even modest complexity. Various diagramming techniques have 
been developed to simplify these descriptions. Functional Flow Block Diagrams are 
one such technique (Blanchard, Fabrycky 1990)(MIL-STD-499 1968).

In summary, the abstractions of behavior are:

• Functions

• Inputs and outputs to the functions
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• Ordering of the functions including: how inputs may trigger functions and how 
inputs may establish conditions for selecting alternative paths in a complex 
behavior 

1.6 Organization of this Book

This book describes both the principles of modeling complex systems, and the process 
of engineering complex systems. It provides a coherent example of modeling a system 
to demonstrate how modeling is employed.

1.6.1 Principles of Modeling
In Chapters 1 through 10, the principles of modeling are developed from primary con-
cepts and abstractions and a core engineering process is presented. These primary con-
cepts and abstractions are familiar to everyday life. They correspond to basic concepts 
used in the many engineering disciplines from software engineering through mechani-
cal and electrical engineering. Because of their generic nature, they form a foundation 
that can be used in the transformation of models from systems engineering specifica-
tions to the notations and views needed by the design engineering disciplines.

The primary concepts are used to build the modeling principles and a description 
of the core technical systems engineering process. The core process is shown to apply 
to the several phases of development: concept phase, domain analysis phase, system 
design phase. The generic applicability of the core process is a simplification in train-
ing, project execution, and in tool development and procurement.

The modeling concepts and techniques are described using both text and graphic 
models. A variety of notations can be used for the graphic models. Although enthusi-
asts argue that particular notations are superior, for our purposes it is sufficient that the 
graphic notation

1. is complete enough to capture the information used in systems engineering

2. that it is computer executable

3. that it has been published and is in use, and

4. that it is easy to learn and to use. 

Unfortunately there is no single existing notation which satisfies all four requirements. 
We do in this book what is commonly done in practice, that is to marry two different 
methodologies, each with its own strength. For the capture of information about struc-
ture of things, a variant of the Object Modeling Technique (OMT) notation from soft-
ware engineering has been chosen, (Rumbaugh 1991). For the capture of information 
about behavior the notation of Functional Flow Block Diagrams (FFBD) has been 
chosen from systems engineering (MIL-STD-499 1968). These diagrams are not com-
puter executable and have been augmented with input/output information. They are 
closely related to Alford’s Behavior Diagrams, (Alford 1977,1992). 
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 Small examples are used to explain and clarify the concepts. An information 
model is provided for each of the major systems engineering work steps to show the 
information handled in that step and the relationships among the information items. 
These models illustrate the information to be collected and transformed in each work 
step. It shows how the pieces of information are interrelated. They also give basic 
information for tool development and integration.

1.6.2 An Example of Modeling
Without examples, the descriptions of concepts and abstractions become an intellec-
tual activity with little feeling of how to use them in real world development projects. 
In chapters 11 through 14 we examine a real world problem. Any real world develop-
ment of a complex system, however, is too large to capture in a portion of a book 
because there is too much detail.

As a compromise, this part of the book describes a single small example prob-
lem modeled with the process and concepts described in the first part of the book. 
Great emphasis is placed on the transition of knowledge from the system analysis and 
design to design engineering. Handoff to software and database engineering is used 
as an example. This emphasis has been selected for two reasons: there is increasing 
pervasiveness of software and database development in modern complex systems and 
there is a shorter tradition of systems engineers communicating with these disci-
plines.

The example problem is selected to be familiar to most readers. It is an Auto-
mated Teller Machine System. The treatment takes the problem from needs and con-
cept analysis through specification of components. It considers the effects on bank 
structure that adding ATM may introduce. In this respect this ATM example is both 
different and more comprehensive than similar examples used elsewhere. 

1.7 Summary

The book concludes with a discussion of engineering of complex systems as it is done 
today. The ability to engineer complex systems efficiently and with rigor is an impor-
tant asset for businesses and for nations. Presently there are excellent engineering 
best practices for the development of large complex systems that have been proven 
over time. These practices, however, are largely unsupported by automation and tool 
environments. Parts of the process are automated, but the existing tools are not inte-
grated. A major reason for this is the extensive use of natural language to express 
most of the design information. Natural language is ambiguous and, therefore, not 
executable by people or computers.

Modeling, used efficiently, is the solution to rigorous and efficient engineering 
of complex systems. Coupled with development of standards for information 
exchange it can also address the problems of creating tool environments.
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Systems engineering can draw upon experience gained in other disciplines. 
Other engineering disciples have closed their gaps by using executable models to per-
form their work. They have created the foundations for tool environments by employ-
ing models to define the information they use and how they transform that 
information.

The basic abstractions needed for modeling in the engineering of complex sys-
tems are common to everyday experience. To proceed with modeling, these abstrac-
tions need to be defined, represented uniquely in a modeling notation, and applied. A 
number of symbolic languages and graphic languages exist that can be used for these 
purposes.

1.8 Exercises

1. Refer to “Put out the milk for dinner” example in “Basic Abstractions used with 
Behavior” on page 29. Create your own graphic notation to express your solutions 
to the following. 

a. Create and draw a picture of an object (thing) with a place to record the object 
name, the object properties, and the object functions.

b. Create a picture of the context of the person, as an object and as the system to 
be described, who will put out the milk. Consider which objects are external 
things in the context and which objects will be inputs or outputs in the behavior.

c. Create a picture for each of the functions, “Get glasses”, “Get milk bottle”, 
“Pour milk”, “Return milk bottle”, and “Put glasses”

d. Show how the above functions are ordered in a graphic picture. Consider the 
required order. Consider any additional ordering you may wish to impose.

e. Create a picture of how inputs and outputs are related to the functions.

f. Combine the pictures of exercises d. and e. to capture in one view the functions, 
their inputs and outputs, and their ordering.

g. What different kinds of milk might you get from the refrigerator. Create a class 
tree for these choices.

2. What problems arise is using the graphic notation developed in question 1?

3. What gaps, other than the modeling gap, exist in the process of engineering com-
plex systems?

4. What degree of formality and rigor is required in executable models?

5. In what ways can modeling speed development of a complex system?
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Basics of Structure
2.1 Introduction to Structure

This chapter focuses on structure and the primary ideas, or abstractions, which are 
essential to its modeling. These abstractions are already familiar from everyday life. 
The words we use in everyday speech, however, and the ideas they convey are ambig-
uous. This chapter clarifies the abstractions for representing structure and shows how 
the ambiguity is resolved (Liskov 1981). It also presents the basis for producing exe-
cutable structure models which can be transformed into alternative views and verified 
by computer. We use the graphic notation of Object Modeling Technique, OMT, 
(Rumbaugh 1991) because it is simple, readily understood, widely used, and sup-
ported by tools. While this book focuses on the abstractions needed for the engineer-
ing work, other notations can be used if they span the needed abstractions.

2.1.1 Structure and Behavior 
Before delving into the semantic makeup of structure and how to model it, we first 
describe the importance of separating structure from behavior. Figure 2-1., Behavior 
and Structure, shows this relationship between these two concepts.
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These two components, structure and behavior, are the essential views of any system 
description. Behavior is the what it does part of the system description and structure is 
the how it is built part. 

These two views, with a mapping of behavior onto structure, form a system 
description. If the desired behavior is defined separately from a structure, then alterna-
tive structures can be readily identified and the desired behavior can be mapped onto 
each of them, so they each exhibit that behavior. A trade-off analysis can then be per-
formed to pick the best solution. This is a critical best practice in the engineering of 
systems because it finds a near-optimal solution while guaranteeing the desired behav-
ior emerges from the system design.

 Not all engineering disciplines place strong emphasis on trade-off among alter-
natives to find a near-optimal solution. Some of those disciplines mix behavior and 
structure together in the views they use of their systems or components. That mixing 
works for those disciplines, but it makes trade-off more difficult because there is no 
independent description of what the system is to do.

System

Description

Behavior

Description
Structure

Description

(what it does)
(how it is built)

mapped
onto

Figure 2-1.   Behavior and Structure
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2.1.2 Basic Views of Structure
The key views of information used to express structure are things or objects, their 
internal attributes, and the associations among them. Figure 2-2., Description of 
Structure: The Elemental Views, is a picture of the relationships among these basic 
views and their relationships to the description of a system’s structure.

Object classes are the primary building block for all structure models. They model the 
elemental pieces of a system’s structure. The primary associations among object 
classes are:

• Classification Trees, which represent categories of things and the relationships 
between the categories, 

Structure

Description

(how)

Object

Parts Tree

how parts
interconnect

how environment
connects

Figure 2-2.   Description of Structure: The Elemental Views
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• Interconnection, which represent the connections among things and between 
the environment and the system, and 

• Parts Trees, which describe how things are composed to make bigger things.

These views are all discussed in more detail later in this chapter along with the OMT 
notation for them. The concepts and notation are illustrated with an example.

2.1.3 Executable Models of Structure
Executable models can be executed either by a computer or manually by an engineer 
to interpret the models, check for accuracy, check for completeness, or translate them 
to notations used by other disciplines. Each kind of item in the model has a single 
meaning and is represented by a unique symbol. The information in the models is suf-
ficient to fully describe the engineering work at hand.

When non-executable models are used with computer tools, the models can be 
read and interpreted by trained engineers. There is some ambiguity in the models and 
the interpretations by different engineers may vary somewhat. The computer cannot 
be used to interpret the models, check for accuracy, check for completeness, or to 
translate them to notations used by other disciplines.

An executable part tree can show the breakdown of a system into its assemblies, 
its least replaceable units and its smallest parts. Such a list can be executed to generate 
the parts needed at any stage of assembly or the parts required for field service of the 
system. If properties of the parts are associated with their object class descriptions, 
then the parts list can be executed to calculate properties such as cost or weight for the 
entire system, for subassemblies, or for least replaceable units.

An executable interconnection diagram can be used to ensure that every part, 
object class, has at least one interconnection. When a system is developed hierarchi-
cally with several levels in its parts list, the interconnection diagrams can be checked 
to ensure that the multitude of interfaces at the lower levels are consistent with the 
interfaces defined at higher levels. If the interconnection diagram represents the wir-
ing list for electronic components, then the computer can do automated layout of the 
components by referring to a library which contains a physical description of the elec-
tronic components and the design rules that apply.

An executable classification tree represents the kinds of parts that may be chosen 
for a system. It can be used as the taxonomy for a browsing facility to search a library 
of parts for the kind of part that is needed. It can be used as the basis for the menus of 
a human-machine interface. It can be used in software with an appropriate compiler to 
generate the message passing among software objects. It provides the basic informa-
tion needed for reuse.
38



Basics of Structure
Consider a scenario for electronic circuit design. An electrical engineer designs 
a circuit for implementation on a circuit board. The circuit elements are chosen from 
a classification of types of circuit elements. This choice produces a parts tree. The cir-
cuit is defined by establishing their interconnections among the circuit elements. 
Because the behavior of each element is known, the electronic behavior of the circuit 
can be calculated. The parts which can be used for these circuit elements are chosen 
from a classification that organizes the parts library. The part pin connections can 
now be related to the circuit element interconnections, and the physical properties of 
the parts can be obtained from the part library. Since the geometry of the parts is now 
know, they can be automatically laid out on a circuit board according to design rules 
using the interconnection data which has been preserved and transformed through 
these steps. Now that the physical interconnection detail has been added, the resis-
tance and capacitance of the interconnections can be extracted and combined with the 
electrical properties to compute actual timing conditions in the circuit. When timing 
is satisfactory, the information can be transformed into masks for forming the circuit 
board, drill tapes for automatically drilling the part mounting holes, and the instruc-
tions for automatic insertion machines to insert parts into the boards. Throughout this 
scenario the three fundamental associations of classification trees, parts trees, and 
interconnection are executed repeatedly, with additional information added at each 
step, and with information transformations applied for application to particular imple-
mentation capabilities. 

In a different engineering domain we can see the same need for development of 
executable structural models. Modern software engineering practice calls for soft-
ware engineers and database designers to determine the interactions between their 
respective parts of the system before committing to any particular implementation. 
The way data is stored and partitioned, the structure of the database, has a profound 
effect on the system’s speed and performance, the behavior of the system. The tools 
used to capture the structure information contain generators which generate the code 
declarations and the database schema from the models. These declarations and 
schema can then be executed and used in trade-off and optimization decision making. 
Once final trade-off decisions have been made the resulting generated code and 
schema becomes part of the system’s implementation.

As the examples demonstrate, when professionals decide to use executable 
models and chose one, or a few, semantically well defined graphic or symbolic lan-
guages for their work, automation can be introduced into the process. This type of 
automation aids the designer in choosing the best design. It produces magnitudes of 
quality and productivity improvement. The rigorous transformations of information 
make sure that the final product implements the design faithfully. With the addition of 
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executable behavior information, discussed in the next chapter, to the structure infor-
mation, simulations of performance can be performed at many stages of the design 
and implementation to ensure that the very first implementation works as desired.

Examples of graphic languages are: 
• Buhr, (Buhr 1984), or Booch, (Booch 1983), diagrams for designing Ada soft-

ware

• electrical schematic diagrams 

• control engineering block diagrams, and 

• object modeling technique (OMT) diagrams for software and databases. 

Examples of semantically well defined symbolic languages are 
• COBOL or C++, software design languages,

• VHDL, a hardware description language, and 

• Express (which was used to define geometry standards).

Unless systems engineers capture their requirements and specifications of behavior 
and structure in a precise and executable language, their requirements and specifica-
tions will remain ambiguous and error prone. While this status quo persists, each 
downstream engineering discipline will have to continue interpreting natural language 
specifications instead of receiving data in their particular notation. These manual 
interpretation efforts are not only costly and error prone, they waste a valuable 
resource, skilled engineers’ time, which would be better spent designing and solving 
real engineering problems. When the systems information is described precisely, auto-
mated tools will ensure that the correct information is provided to the component 
engineers quickly, accurately, and unambiguously.

There are a large number of notation suitable for systems engineering concepts. 
Criteria for evaluating the various notations are: ease of training, ease of use, match 
with organization culture, and adequacy of tool support. In performing this evaluation 
it is essential to understand the underlying semantic constructs required to do systems 
engineering. Once the base concepts are understood, then the tools, views, and repre-
sentations of information that can help the systems engineer can be judged. In this 
book we have chosen to use the OMT notation, with minor adaptations to better repre-
sent the systems engineering structure information. 

The remainder of this chapter introduces the semantics and OMT notation for 
structure and illustrates it by modeling the structure of a pocket knife. The semantics 
and notation for modeling behavior will be considered in the next chapter.
40



Basics of Structure
2.2 Example - Modeling a Pocket Knife

In order to introduce OMT notation for structure and to make it clear what is meant 
by the written descriptions, we will walk through the steps taken to model a well 
known physical object. We have chosen a pocket knife as our subject. The particular 
knife we are modeling, shown in Figure 2-3., Ordinary Pocket Knife, has two blades, 
a can opener/small screwdriver, a bottle opener/large screwdriver, an awl, a cork-
screw, and a key chain. All of these parts of the knife and the relationships among 
them need to be captured, unambiguously, in our model. 

2.3 Objects and Classes

The next several sections introduce the various object modeling concepts and give an 
example of each concept as applied to the pocket knife. We also give a brief overview 
of the OMT notation for each concept and note where our usage departs from the gen-
eral practice. See Object Oriented Modeling and Design for a more complete treat-
ment (Rumbaugh 1991). This formal method, when coupled with other modeling 
techniques described elsewhere in this book, form an executable model of the entire 
system. This model can then be tested and verified for correctness. We begin with 
objects.

2.3.1 Definition
What are objects? In general they are things, physical or logical things. Looking 
around a room you can see many objects: chairs, tables, carpets. These are all obvious 
examples. There are also some less obvious objects: openings, color, and airflow. 
Choosing the right set of objects to model for a particular problem or to include in a 
system design is an art. There can be many potential right sets of objects. Trade-off 
analysis performed after the mapping of behavior onto the object structure guides the 
final choice of objects to include in the system implementation.

Figure 2-3.  Ordinary Pocket Knife
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When we speak about objects we talk of classes of objects and instances of 
objects. Classes define a category of things, where all the member of share certain 
structural and behavioral traits. Trucks, Cars, and Planes are all examples of classes. 
All trucks share certain properties as do all planes. Instances define a specific object 
such as “Bill’s Red Truck.” They are members of a class and as such share the com-
mon behavior and properties but, they also have a distinct identity apart from the 
class.

 Classes can be general such as “Vehicles”, which would include cars, planes, tri-
cycles, and all sorts of other types. Classes can also be very specific such as “Internal 
Combustion, four wheeled, 2 passenger automobiles.” In developing an object model, 
trade-offs need to be made about the amount of detail that is included in a class defini-
tion. The more specific it is the easier it may be to use in a particular implementation. 
This weighs against the portability and reusability of the object design. It may be hard 
to adapt to an alternate architecture if the structure model is too narrowly defined. 

2.3.2 Modeling Objects in OMT
Object models are used to identify and capture the information pertaining to an object 
class and to define the associations between object classes. The information captured 
includes:

• Class Name,

• Attributes (properties), and

• Functions (methods, operations) performed by object class

By using Object Models a systems engineer can formally express the composition of 
an object class and its associations with the other objects classes in the system. The 
model of the class then embodies the specification and requirements for the systems 
structure. As the class model is developed it is important to record the rational for 
design decisions along with the model.

 Figure 2-4., Class Definition Box, shows how the class definition is depicted 
using OMT.

Functions

Class Name

Attributes

Figure 2-4.  Class Definition Box
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Class Name 
The class name is the primary identifier by which the existence and purpose of the 
class is conveyed from the designer to potential users of the class. The only semantic 
rule associated with a class name is that it be unique. This ensures that the class is dis-
tinguishable from all other classes. Practicality, however, dictate that a name appro-
priate for its associated structure and functionality be chosen. As with choosing 
which classes to use in a system, the choice of a name is not an exact science. The 
name should be broad enough to cover most of the potential uses of the classes, yet 
narrow enough not to overstate the capabilities of the class. There are a variety of 
naming conventions in use, all equally valid (Young 1990). One convention should be 
adopted for all objects within a system. 

Class Attributes
Class attributes are the properties shared by each instance of the class. The list of 
attributes for a class must include all of the properties of the class that are needed for 
the engineering problem at hand. For a class that models a physical thing such as a 
car, the attribute list will include items such as weight, acceleration, fuel consump-
tion, turning radius. The attributes are the kind of information typically found on a 
spec sheet.

Attributes are used in two ways. They can model calculated information or local 
information. For the class car, the attribute acceleration will be a function of attributes 
of parts used to build the car, like weight, engine torque, transmission ratio, and tire 
diameter. In order to calculate acceleration for the car values must be known for these 
attributes. The system engineers may have an established goal for acceleration if it is 
important to customer needs and wants. In this case, they must budget design targets 
for weight, engine torque to the designers of the components. They must monitor the 
actual values achieved in design, and finally validate acceleration on the implemented 
product. The other attribute usage is for local information. These attributes store the 
rest of the information that must be known about an individual instance. In the case of 
the class car, fuel type is such an attribute. One instance may have the value gasoline 
for its fuel type and another may have the value diesel. 

An attribute is more than just a name. Type information is generally included in 
addition to the name. They may also have default values which are used to initialize 
instances. These defaults persist in the instance until a better value has been estab-
lished. 

Choosing which attributes to include in a class definition is part of the art of 
object modeling. Only the highly relevant attributes needed by engineers for the prob-
lems and questions they must answer should be included as part of the object class. 
Other, secondary attributes are often better left to other parts of the structure. If, while 
defining classes, one class is found to contain a collection of weakly related attributes 
then the structure as modeled is probably lacking and needs to be reworked. 
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Class Functions
A Class can be passive, having no functions, or it can be active, having a variety of 
functions. The functions detail what behavior the instances of the classes can perform. 
Physical objects that are active generally have an energy source that fuels their activ-
ity. A variety of words are used synonymously with function: method, operation, 
activity. In the parlance of object oriented structure design, method is most commonly 
used.

 As with attributes, choosing which functions are part of a class is a mixture of 
science and art. Some functions naturally belong as part of a class. Others are not so 
obvious. Car class would be likely to have start, stop, accelerate, and turn functions 
among others. Our pocket knife might have open tool, close tool, cut and sharpen 
methods. Modeling refines the choice of methods.

It is only as a class is viewed in relation to the rest of the system and in relation 
to the desired behavior (functional requirements) for the system that judgements can 
be made about which functions should be included or excluded. Some functions for a 
class are discovered when the desired behavior for the system is mapped or allocated 
to the object classes from which the system is to be built. For the pocket knife exam-
ple, the function cut may not be a part of the class pocket knife at all, it may be part of 
a class blade or even class person. 

The assignment of functions to a class define its interfaces with the rest of the 
parts in a system. They serve to hide all of the internal structure and behavior details 
of the class. This leads to a great degree of flexibility and reuse potential. Mechanical 
engineers have embraced this black box encapsulation since Joseph Bramah designed 
and manufactured his locks in England in 1784 using interchangeable pars, (Encyclo-
pedia Britannica Vol. 11, pp.11, 1980). Independently Eli Whitney designed and mass 
produced muskets with interchangeable parts for the US government in 1801 in the 
United States (Encyclopedia Britannica Vol. 19, pp.822, 1980). The rise of object ori-
ented software design has led software designers to adopt a similar approach. In the 
modern development of large systems, industry standards, referred to as protocols, are 
often defined for interfaces so that many vendors can supply parts of the system yet 
maintain proprietary designs for the interior structure and performance of the parts 
they supply.

Instances
Instance diagrams are similar to class diagram with the exception that they describe 
actual objects or things and not just type definitions. Figure 2-5., Instance Diagram, 
shows the graphic notation used for an instance diagram in OMT.
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An instance diagram has rounded edges on its outline and shows the instance’s name 
and class along with the attributes and the instance’s value for the attribute. In an 
instance diagram you can have many instances with the same class.

2.3.3 Example - Pocket Knife, Object Class Definition
Figure 2-6., Initial Class Definition for Pocket Knife, shows a first pass design for the 
pocket knife class.

Since we are modeling a pocket knife, that is the name we will give to our class 
definition. As our understanding of the design evolves, so may the name. From exam-
ining the knife we are modeling, six attributes are chosen to characterize it. The 
attributes Number of Blades, Number of Tools, and Tool Types are all used to charac-
terize the elements that are part of the pocket knife. Sharpness and Wear characterize 
the performance of the pocket knife in use in its environment. Color is an appearance 

Class Name

Attribute1_name = value

Instance

Figure 2-5.   Instance Diagram

Attribute2_name = value

Instance Name

Figure 2-6.  Initial Class Definition for Pocket Knife

Hold tool open

Pocket Knife

Number of Blades

Hold tool closed

Color

Number of Tools

Tool Types

Sharpness

Wear
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attribute. Later we will consider whether all of these attributes are appropriate to this 
class, or whether some of them are more appropriate to some of the classes from 
which it is built or to which it relates. Other attributes may also need to be added such 
as Strength or Corrosion Resistance.

The functions, (methods) for Pocket Knife will be considered thoroughly in 
Basics of Behavior on page 67. In this chapter a few of the ideas concerning assign-
ment of functions to objects are developed, particularly where structure considerations 
contribute to the understanding of behavior and the assignment of functions to objects. 
The functions for Pocket Knife involve holding the tools open or holding them closed. 
This is not obvious because one might initially associate cut, turn, carve, whittle and 
similar functions with pocket knife. However, what distinguishes a pocket knife as a 
whole is that it holds the tools closed in the handle, and then holds tools open when 
they are in use. There is a physical mechanism which stores and releases energy to do 
this, a spring. These two functions are not a result of any one part, like the spring, but 
are the result of the assembly of the parts into the whole with interfaces among the 
parts which have been carefully designed to give the assembly this emergent behavior 
which is a result of several parts working together.

In contrast, functions like cut or turn are the result of the application of a particu-
lar tool to a work piece with which it interfaces properly. A can opener tool cuts open 
a can and a phillips head screw driver tool turns a phillips head screw. Similarly, func-
tions like carve or whittle are appropriately assigned to the person who is manipulat-
ing the pocket knife against the work piece because they refer to the purpose and 
control of the overall activity. The important point to understand is that the full 
description of an object includes the identification of the functions that object per-
forms, and that the analysis needed to make such an assignment involves study of both 
structure and behavior.

2.3.4 Example - Pocket Knife Instances
Having defined the pocket knife object class, we can now look at instances of the 
class. To do this we use an instance diagram. Figure 2-7., Several Instances of Pocket 
Knife, shows how this looks.The four instances shown are all pocket knifes but they 
are distinct from one another. 
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The same functions can be performed by each of the instances since they are the 
same class. 

2.4 Aggregation

Most things in the world are built from other things, certainly this is true of complex 
systems. Aggregation or a Parts Tree is the abstraction used to represent the parts 
which comprise a bigger thing. This powerful abstraction allows us to think about the 
whole thing, think about the set of parts that comprise it, or focus on one of the parts 
that is used to build it. When our thought process goes from the whole to its parts, the 
process is considered to be decomposition or partitioning. When our thought process 
goes from the parts to the whole, the process is considered to be synthesis or composi-
tion. Aggregation represents the tree of parts. Engineers can work top-down, bottom-
up, or middle-out.

2.4.1 Modeling Aggregation in OMT
Figure 2-8., Aggregation Used to Model the Structure of the Universe, shows how the 
aggregation association is depicted graphically in OMT. In this case, the universe is at 
the top of the aggregation hierarchy, with each tier in the tree representing a finer 
granularity of parts, until the very bottom which models the fundamental particle 
class. The diamond on the lines connecting a class to its constituents denotes the asso-
ciation as being one of aggregation. This type of tree is called an AND tree.

Aggregation has been used to represent two useful but, inconsistent concepts: 

Figure 2-7.  Several Instances of Pocket Knife

 Pocket Knife

Number Blades = 2
Color = blue
Number of Tools =3
Tool Types = (knife, can opener,

Sharpness = 90%
Wear = 23%

Dave’s Knife #2

Pocket Knife

Number Blades = 2
Color = red
Number of Tools =3
Tool Types = (knife, pick, awl)
Sharpness = 60%
Wear = 40%

Dave’s Knife #1

Pocket Knife

Number Blades = 2
Color = red
Number of Tools =3
Tool Types = (knife, pick, awl)
Sharpness = 90%
Wear = 23%

Carol’s Knife
 Pocket Knife

Number Blades = 2
Color = red
Number of Tools =3
Tool Types = (knife, pick, awl)
Sharpness = 90%
Wear = 23%

Jim’s Knife

                        bottle opener)
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1. To mean built from, a whole assembled from its parts and requiring all parts to 
be present.

2. To mean contains a, a whole containing the indicated parts, but existing in the 
absence of the parts.

Aggregation drawn with an open diamond symbol is used to represent built from. 
In this text we will use a solid black diamond for the abstraction contains a. This is an 
extension beyond traditional OMT.

The diagram in Figure 2-8., Aggregation Used to Model the Structure of the Uni-
verse, depicts aggregation as a tree. In the real world there are many aggregation trees, 
there are also many aggregations that are networks rather than trees. Consider if the 
universe diagram were to be fleshed out. Every class on the penultimate tier has an 
aggregation relation (made up of) with fundamental particle. They also would have 
other aggregation relations with higher order classes (is part of). Thus aggregation 
relations can become a network of relations amongst the existing classes. The system 
of interest may be anywhere within this vast network. The engineer uses only that 
small portion of the network needed for the problem. The same modeling abstractions 
are used for all tiers.

 

2.4.2 Example - Pocket Knife with Aggregation
 Aggregation in object models is a way to represent the relationship between classes. 
The pocket knife was shown in Figure 2-3., Ordinary Pocket Knife. An expanded 
view of it is shown in Figure 2-9., Pocket Knife Disassembled. From this view we can 
see that the knife is built from two plastic side panel, a metal case built from plates, 

Universe

1st Decomposition Tier

aggregation = built from, AND tree

2nd Decomposition Tier

Fundamental
Particles

Last Decomposition Tier

Figure 2-8.  Aggregation Used to Model the Structure of the Universe 
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springs and rivets, six tools, and a key chain. This is the structure that we should 
model if we are to end up with a flexible and broadly useful design. We will use 
aggregation to describe it.

The metal case is secured with a rivet, and three rivets are used for hinges for the 
tools. In system design it is important to determine how the parts are related to sub-
assemblies until the final object is assembled. The parts tree, however, can be drawn 
in several different ways, each with its own use. If one only needs to collect all the 
parts, it is sufficient to go from pocket knife to all the parts in one tier. For our use in 
modeling the structure of the pocket knife we choose to show all the aggregate levels 
of structure. This is shown in Figure 2-10., Part Tree for Pocket Knife.

Figure 2-9.  Pocket Knife Disassembled
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The new design mirrors the observation we made looking at the picture of the disas-
sembled knife. The plates, springs, and rivets comprise the Metal Knife Case. This in 
turn along with the tools and the Key Chain comprise the Metal Knife Assembly. 
Finally, this assembly and the Plastic Side Panel aggregate to form the Pocket Knife. 
At each of the diamonds, there is an assembly.

Figure 2-10., Part Tree for Pocket Knife uses a different view of the classes than 
we saw in the previous section. In it we have chosen not to show all of the attributes 
and methods of the classes. To proceed further with the design, this level of detail 
should now be added. We will do some of that investigation but leave the complete 
design as an exercise for the reader. 

Taking the attributes first, consider Color. We find that this attribute no longer 
belongs to Pocket Knife but rather should be moved to the Plastic Side Panel class. 
Additionally, this class needs to augmented with an attribute that deals with the logo. 
If we look at a different attribute of the original class, Number of Blades we find that it 
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Figure 2-10.  Part Tree for Pocket Knife
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is no longer necessary. The aggregation structure clearly shows how many blades the 
knife has. It is eliminated. The remainder of the original attributes must be similarly 
considered. 

Now consider the methods from the original design. Tool specific functionality 
such as “cut” and “open can” need to be moved out of the Pocket Knife and into the 
appropriate tool classes. With this change we begin to see the an improved, more 
flexible design. Changing which tools are included with the knife is now just a matter 
of aggregating a different set. The methods of the knife class are not affected by the 
change. In the original design all of the methods of Pocket Knife would need to be 
updated to accommodate this change.

We should revisit the name of our class at this point. We have explicitly mod-
eled the tools that make up this knife. This has actually reduced the scope of the 
pocket knife class somewhat. The model, as it stands, is more appropriately named 
Six Tool Pocket Knife. Later on we will show how to model a more flexible design 
that covers a wide range of tooling options without needing to change the aggregation 
relations. Figure 2-11., Part Tree for Six Tool Pocket Knife shows the design as it cur-
rently stands, with the attributes and functions redistributed as discussed above.
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The aggregation used here is more general than a one tier picture that goes 
immediately to all the parts. One can change the kind of pocket knife by substituting 
different kinds of tools among the six that can go in the tool. One can make the knife 
bigger and able to accommodate three more tools by adding an additional spring and 
channel plate to the Metal Knife Case. This type of design and style of showing aggre-
gation promotes reuse, which has been called family-of-parts for many years in 
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mechanical systems. Many different knives can be assembled from the same set of 
parts by varying the number of channel plates and springs, and by selecting among 
tools that can be used.

Aggregation is modeled as a relationship between classes. Thus the Six Tool 
Pocket Knife class is associated with the Metal Knife Assembly class. Instances share 
in this association as they share in all other aspects with their class definition. Thus 
Dave’s Six Tool Pocket Knife will be associated with Dave’s Metal Knife Assembly 
and Dave’s Plastic Case and instances of all the other classes with which Six Tool 
Pocket Knife has an aggregation relationship.

2.5 Cardinallity

It is very desirable to have another abstraction to show the choices and constraints 
one has in selecting among objects. The aggregation tree is an AND tree that shows 
that a class is built from part 1 and part 2, and part 3. It is not sufficiently detailed to 
capture binary information noting the existence or non-existence of connections in 
these trees. Each of the situations below merits further description within the struc-
tural model to capture what would otherwise be expressed in hard to digest prose or, 
more probably, never be explicitly stated.

• Exactly one instance is a part of a class which aggregates it.

• Potentially many instance are included as parts.

• The part may or may not be included.

• An exact number of parts is required.

• A range of parts is required.

2.5.1 Cardinallity in OMT
Figure 2-12., Cardinallity and Conditions Expressed in OMT, shows how each of 
these are depicted within the graphics of the OMT methodology.
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.

Symbols are used for the frequent cases of many and optional. The association is 
annotated numerically for other cases. 

2.5.2 Example
With the additional flexibility given by the introduction of the cardinallity abstraction 
we can be more specific in our model of the Six Tool Pocket Knife. Several facts 
about the knife have been left out of the model so far. These involve the number of 
each part that is required. Figure 2-13., Part Tree for Six Tool Pocket Knife with Cardi-
nallity shows the updated model with this information added.

Class

Figure 2-12.  Cardinallity and Conditions Expressed in OMT
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2.6 Classification of Objects

The next major abstraction for describing structure which we will discuss is classifi-
cation. Put simply, classification is a way of grouping similar things. Classifying is 
one of the earliest skills developed by children. They learn to understand the world 
around them by developing categories for all that they experience: fun things, hot 
things, things that get me in trouble. Given that this skill is developed early and con-
tinues to be reinforced throughout life it would be foolish not to exploit classification 
for understanding and designing systems. It has been employed for centuries in vari-
ous ways:

• Library catalogues

• Layout of items in a store

• Grouping of financial items in accounting

• Providing products that can be customized
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• Designing with a family of parts

Depending on which direction you look at it, classification can be seen as Generaliza-
tion or Specialization. In generalization we look at a collection of objects and use 
common attributes (properties) or behavior to group things together. Sneakers, boots, 
and slippers can all be generalized as shoes. In specialization we take the opposite 
view. We break down a general class into smaller ones which share the attributes of 
the general class but have different attributes which distinguish one from another. 
Shoes are specialized as sneakers, boots, and slippers.

The groupings, classes, are used to discuss, store, or locate a group of things. 
The difference between finding something in a department store or in a flea market is 
that the merchandise in the department store has been classified and arranged geo-
graphically according to well understood classes. To get sneakers one goes to the shoe 
department of the department store or to a shoe store.

The attributes and functions of a general class are all present in the more specific 
classes that are descendent from the general class. 

2.6.1 Classification in OMT
As with the other elements of structure, it is useful to have a graphic notation for clas-
sification to augment text. Figure 2-14., Classification Tree for Pocket Knife, shows 
how OMT represents classification with a triangle. In OMT the class at the root of the 
tree is known as a superclass while those at the bottom of the tree are called sub-
classes.
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2.6.2 Example - Classification of Tools
Going back to our example, we note that there are more kinds of pocket knifes than 
we have considered so far. The six-tool pocket knife is but one of these. Others 
include:

• Switch blade knives, which open and lock the blade on depression of a release

• Gravity knives, which open the knife by gravity and lock it on depression of a 
release

• Lock blade knives, which are opened by the user but lock open

• Multi-Tool pocket knives, which are opened and closed by the user. The knife 
holds the tool open or closed, but does not lock it in position.

Figure 2-14., Classification Tree for Pocket Knife classifies pocket knives based 
on the way they are opened and held open. Each of the subclasses inherits common 
features from the parent class. In this case they all inherit the function Store the tools 
in handle. Each of these subclasses has unique functions and attributes which distin-
guish it from the other subclass members. The four subclasses differ in the manner in 
which tools are opened and are held open.

In our example, we have designed a Six-tool Pocket Knife. We noted, however, that 
perhaps there is a better way to model this design. Classification can be used to this 
effect. Figure 2-15., Types of Tools for Class Tool gives a classification of sixteen 
possible tools to use in a multi-tool pocket knife. They all are tools and as such share 
whatever common attributes are modeled as part of the tool class. For this example, 
that would probably include Size and Attachment Point since all the tools are required 
to fit within the storage space provided in the handle of the pocket knife.
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 The Tool class introduced above can now be inserted into the aggregation tree 
for the Six Tool Pocket Knife in place of the direct aggregation of the individual tools. 
We have now succeeded in extending our design from a very specific Six Tool Pocket 
Knife that required a change in the structure model to change the tools which were 
included to a family of Six Tool Pocket Knives where 8008 distinct Six Tool designs 
are possible without requiring a change to the structure model.

By combining the new Tool class with a change in the cardinallity constraints on the 
design we can generalize the model even further. The simple abstractions used to 
describe structure are powerful enough to describe a product family that extends 
beyond six tool pocket knifes. Analysis of the structure model shows that one can 
build knives with three, six, nine, or twelve tools by adding springs and channel 
plates. Knives for a variety of purposes can be composed by choosing among the six-
teen tool types. As we make this change we will need, once again, to update the name 
of the class. This time we move to a more general name of Multi-Tool Pocket Knife. 
The model of this Multi-Tool shows a variable n used for cardinallity. In this case n 
can be any integer value from one to five. Figure 2-16., Multi-Tool Pocket Knife Fam-
ily shows the resulting design.
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It is apparent that one can use aggregation and classification to represent just the 
collection of parts needed to make a specific knife, the assembly of a particular knife, 
or an entire family of knives and their assembly. No one of these alternatives is better 
than another. It is efficient to use the simplest description that captures all the infor-
mation needed for the problem at hand.
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2.7 Interconnection of Objects

Objects do not stand alone. They work together in a cooperative manner to achieve the 
goals of the designer. Interconnection is the abstraction we use to think about how 
things (systems and objects) interrelate physically or logically. 

2.7.1 Definition
Objects interact with some but not all of the other objects in their environment. Each 
of the interactions is modeled as an interconnection. Each interconnection has a num-
ber of properties that also need to be modeled. Chief among these properties are the 
role that the interconnection models and the information transfer which takes place at 
the interconnection. Interconnections between a system and its environment describe 
its context. Interconnections internal to a system describe its assembly.

Roles and Interconnection
Every interconnection has a role associated with it. Roles define the reason for two 
classes to have an interconnection. Understanding of the roles used in interconnection 
is key to understanding the corporate behavior of the classes. Roles are by their nature 
symmetrical. That is if class A has a role association with class B, then class B has a 
corresponding role association with class A. In some cases as we will see later the role 
is secondary to the information being transferred. 
Some examples of role associations: 

• A person holds a knife / the knife is held by a person

• A generator powers a motor / a motor loads a generator

• A parent supports a child in college / a child in college is supported by a parent 

• Requirements trace to functions / functions trace to requirements

Input/Output and Interconnection
Input and Output along an interconnection describe the flow of information, material, 
or energy among the objects. Although every interconnection has a role associated 
with it, the same is not true of Input/Output. Only active objects which encapsulate 
functions that transform information, material, or energy send something which is out-
put from one object and input to another. Interconnections exist between passive 
objects but they have no associated I/O. From the standpoint of developing an execut-
able model capturing the I/O information is critical. The I/O definition contains infor-
mation detailing the type and quantity of stuff being generated and consumed. This 
along with numbering and conditional markers make the model executable.

 Some examples of Input/Output associated with interconnections are:

• A person applies force to a knife, measured in newtons
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• A telephone caller speaks to a callee/the callee speaks to the caller, measured 
in information content

• A generator delivers current to a motor, measured in amperes

• A parent gives money to a child in college, measured in dollars

Input/Output has directionality and may flow in one direction between objects, 
or in both directions.

Not every interconnection has input/output associated with it. For derived 
requirements and the parent requirements from which they are derived there is a logi-
cal reason for interconnection, but there is no input/output associated because 
requirements are passive objects, and do not generate outputs or consume inputs

Some engineering disciplines, like electrical engineering think primarily about 
interconnection and input/output. Others, such as database engineering, deal prima-
rily with passive objects (information items) and think primarily about interconnec-
tion and roles. In systems engineering both are needed.

2.7.2 Interconnection in OMT
In OMT interconnection is represented graphically as a line between the object 
involved. The line is annotated with the reason for the interconnection and sometimes 
the inputs and outputs. Cardinallity and conditionallity is also represented on inter-
connections. The same cardinallity notation is used for these that is used with aggre-
gation. Figure 2-12., Cardinallity and Conditions Expressed in OMT, summarizes this 
notation. In OMT interconnections are called associations. The aggregation and clas-
sification relations are also called associations in OMT.

2.7.3 Example - Multi-Tool Pocket Knife Context
Classes have an environment in which to operate. This environment is called the con-
text of the object. By modeling the context we will gain additional insight into the 
working of the object we are designing. Interconnection establishes the boundary 
between the thing and the context in which it is used. In software terms, it defines the 
application program interface, API. In the physical realm, it is the boundary defini-
tion for differential equations or the physical coupling to other objects.

One way to approach development of the context of a system is to think through 
its use or operation in its environment. When written in text in narrative form this 
information is often called an operations concept. A simple narrative for a pocket 
knife follows.

“She reached into her right pocket and took out the pocket knife. She 
opened the large blade and grasped the knife firmly. She picked up the work 
piece in her other hand and whittled it to the desired shape. She put down the 
work piece, closed the knife, and put it back into her pocket.”
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Note that the only actions as written are performed by the person. The knife 
blade is acting as a pressure transformer which receives 10 or 15 pounds of force on 
the handle and transforms that to tens of thousands of pounds per square inch of pres-
sure where the blade edge pushes against the workpiece surface. But there are actions 
performed by the knife that were not written down. Here is the same operations con-
cept, augmented with the knifes actions.

She reached into her right pocket and took out the pocket knife. She opened 
the large blade with her thumbnail against the closing force of the knife 
and the knife held the blade open. She grasped the knife firmly. She picked 
up the work piece in her other hand and whittled, by applying force to the 
knife which transferred the force to the workpiece, it to the desired shape. 
She put down the work piece, closed the knife against the holding force of 
the knife and the knife held the blade closed, and she put it back into her 
pocket.

To model the context we must first identify the objects involved. The objects in the 
environment with which the knife interconnects are the person, the pocket, and the 
workpiece. Figure 2-17., A Context of Multi-Tool Pocket Knife shows these intercon-
nections. If not needed for clarity, the line between person and pocket and the line 
between person and work piece can be eliminated because they do not show intercon-
nections directly to pocket knife and are not essential for understanding its context.
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2.7.4 Example - Multi-Tool Assembly Interconnection
In addition to relating to things in their context, things are also built out of other 
things. Certain of the parts interconnect or are associated to assemble the thing. Inter-
connection shows how to assemble an object from its parts. For each aggregation, or 
assembly point, in the aggregation for the multi-tool pocket knife, there is an assem-
bly of parts, an interconnection. Figure 2-18., Assembly Interconnections for Metal 
Knife Case shows the assembly interconnections for the Metal Knife Case. 

The Channel Plate, Spring, and Metal Side Plate are secured by the Assembly Rivet. 
The Channel Plate is adjacent to two springs. Dimensioned mechanical drawings con-
vey more information about physical objects than do the object diagrams, but that is 
the work of mechanical engineers doing detail design. The object diagrams for struc-
ture capture the parts, the choices among parts, and how the parts are to assemble, 
without designing the parts. 

2.8 Roles

We have described the abstractions needed to describe structure and a notation for 
these abstractions. These abstractions are all static in nature. That is they capture the 
structure of the system at one instant and in one context. Real systems are more com-
plex than this. A single object may have several roles in the system depending on 
when in the life cycle it is viewed and what problem is being considered by what 
group of people. Possible roles a thing (object) may have in systems engineering 
include:

• Subject System, the thing being defined,

• External System, something in the context of the thing being defined,
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SpringChannel
Plate adjacent toadjacent to

                2

secure

secure secure
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Figure 2-18.   Assembly Interconnections for Metal Knife Case
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• Component, a part of the thing being defined,

• Input/Output, something consumed or produced by the thing being defined.

In our pocket knife example the knife as we have studied it is the subject system. From 
the standpoint of a carver, however, it is just one of many tools in the carver’s environ-
ment. Consider all the roles an automobile engine might have:

• The Subject System by the engine design team

• An External System by the transmission design team

• A Component by the automobile design team or by a buyer considering engine 
options

• An Output by the Engine Manufacturing Facility

• An Input by the Automobile Assembly Plant

• An Input and Output by the Just-in Time Logistics Group that delivers parts to 
the Automobile Assembly Plant

It is important to know what roles an object participates in when viewing it to under-
stand its place in the total structure. It is also important to maintain consistency in the 
object’s design between its use in different roles. The structure modeling capability 
described captures these associations rigorously enabling all designers to develop a 
shared understanding. Roles and their effect on structure will be discussed in detail in 
later chapters.

2.9 Allocation of Functions to Objects

Now that some structural analysis has been performed, the knife is understood in 
terms of several structure models:

1.  A classification tree which shows the parts that can be selected

2. A parts list or aggregation which shows the parts selected and the parts needed 
for assemblies of parts

3. An interconnection diagram that defines the context
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4. Interconnection diagrams that show the interfaces in the assemblies and subas-
semblies

These structure models help with the assignment of functions to the objects in the 
models, although behavior analysis, described in Chapter 3. is needed to fully 
develop alternatives in assigning functions to the objects. From the context it is seen 
that functions like whittle or carve or fasten with screw are appropriate to assign to 
the Person who will manipulate the work piece and the pocket knife and select an 
appropriate tool. Functions like turn phillips head screw, or cut open can are appropri-
ate to assign to specific tools. When this understanding is augmented with executable 
models of the behaviors involved, the problem and proposed solution are described 
rigorously.

2.10 Summary

A semantics for static structure has been defined
The semantic abstractions defining objects are:

• Object Classes having:

•  Name
•  Attributes
•  Functions

• Object Instances inheriting:

•  Attributes and having Attribute Values
•  Functions

The semantic abstractions defining associations among objects are:
• Parts Tree (Aggregation)

• Interconnection applied to:

•  Context
•  Assembly

• Classification

• Cardinallity

These abstractions have been demonstrated with the modeling of a real product. 
The models can be detailed and apply narrowly to a specific product.

The models can be generalized to model a product family and the reuse options

The models of structure are computer executable

A notation, OMT, has been described for this modeling; any other notation may 
be used that covers these abstractions.
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The notation can be selected or tailored to organization culture and preferences

2.11 Exercises

1. Create a Class Box for a person using a pocket knife. Include important attributes 
and functions.

2. Look at Figure 2-6., Initial Class Definition for Pocket Knife on page 45, and exam-
ine the attributes. Do any of the attributes belong more appropriately with the parts 
of the knife? Are there important attributes missing? Consider your fingernails in 
opening such a knife. Consider limits in turning screws or prying open paint cans 
with a screwdriver tool. Redraw the Class Box for Multi-tool Pocket Knife and cre-
ate one for Tool. Identify the appropriate attributes and initial functions for both 
classes.

3. Create Assembly diagrams for Multi-Tool Pocket Knife and for Metal Knife 
Assembly

4. The Multi-tool Pocket Knife stores tools in channels, which are not parts, but are 
regions defined by a set of parts. Define channels using OMT models.

5. More than one type of tool is available to use in making pocket knives. How does 
the type of tool effect the model of channels?

6. Observe your surroundings.

a. Create class definitions for six things in your environment.

b. Create assembly or interconnection diagrams for these six things.

c. Chose two of the classes and show how they are related using classification.
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Basics of Behavior
3.1 Introduction to Behavior

In the previous chapter we described the elements of structure and a notation for 
those elements. In this chapter we explore the same issues for behavior. Behavior is 
what a thing or object does, or what one wants a thing to do. Behavior for a system 
describes what the system is to do, independent of how the system will do it. A full 
description or model of behavior contains sufficient information that a person or a 
computer may execute the model and observe the desired behavior. When behavior is 
expressed with such a description it is referred to as an executable behavior. Such 
descriptions have been developed to enable engineers to develop time lines for the 
performance of systems, and to execute time-dependent simulations and probabilistic 
calculations. When behavior is captured in executable form, it may be checked for 
correctness. In this way conditions such as starvation, where one part of a system 
never receives the inputs it needs, or deadlock, where separate parts of the system are 
stuck waiting for each other, can be uncovered and corrected during system design.

Many methods of describing behavior have been developed over the years. The 
methods vary in formality and in the degree of detail which they capture.

This chapter looks at details which must be captured in order to have an execut-
able behavior, and compares this information to some popular methods for describing 
behavior or partial views of behavior using text alone or graphic notations.

3.1.1 Elements of Behavior
In order to create a complete description of a behavior a number of modeling ele-
ments are required. The necessary set of semantic elements includes:

• functions, which accept inputs and transform them to outputs

• inputs and outputs, of various types, and
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• control operators, which define the ordering of functions

These modeling elements must be defined using a precise definition language and 
expressing these elements with a notation which is unambiguous. The particular set of 
symbols and notation used is unimportant so long as they are understood and consis-
tent. Any notation which has all of these characteristic elements can be made execut-
able.

Despite the precision and range of expression afforded by use of a behavior nota-
tion, text cannot be eliminated. Except at the lowest level a text description is required 
to accompany the behavior model. The text provides a description that can quickly 
give consumers of the model an intuitive feel for the model. The details can then be 
quickly found by looking at the model. As with all other parts of system design, sev-
eral conventions have been developed for these text descriptions. The most common 
are:

• definitions for a data dictionary,

•  imperative statements, often containing the word “shall”, which constitute a 
list of what the system, object, or thing is to do. These are particularly useful 
for contract and acquisition purposes. This list is termed the specification by 
the organization producing it, which becomes the customer. In current practice, 
it often forms the basis for the contract to build a system, requiring a supplier to 
produce something according to the list. From the suppliers viewpoint this list 
is called the system requirements.

• narrative statements which can be joined together to provide a text description 
of what the object is intended to do. A narrative of this type is called an opera-
tions concept. It is useful for communication with users, owners, operators, 
management, marketing and other disciplines which do not need or wish to deal 
with all of the engineering detail.

It is important to note that these text descriptions are not sufficient to fully describe a 
system, just as the model does not stand on its own. Only by blending the two sets of 
information do they become a complete picture.

3.1.2 Behavior in the System Context
The static description of context establishes what elements in the environment interact 
with the system. The static model of context defines the system by establishing what 
external systems interact with the subject system and by listing what excitations, func-
tions, the external systems perform to which the subject system must respond. Figure 
3-1., Structural Context of Multi-Tool Pocket Knife, shows the final context model for 
the pocket knife example as developed in the previous chapter. Throughout the devel-
opment of the structure model definition of the functions associated with the classes 
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was left vague. The interconnections in the context diagram suggest some of the nec-
essary functions. In order to go further with function definition, however, we need to 
take a step back for the structural model and develop a model of the desired behavior. 
Once this is defined we can then partition the behavior and map it onto the structural 
elements. 

3.1.3 This Chapter
The static model is lacking two major elements required to rigorously describe 
behavior:

• The ordering of the functions

• The inputs and outputs to each function

In this chapter we will explain these concepts in detail and introduce appropriate 
graphical modeling notation for modeling them. We will continue illustrating the 
modeling concepts and notation with out multi-tool pocket knife. 

After these descriptions and illustrations, we will use OMT to precisely define 
an information model for behavior. The chapter concludes with a discussion of how 
these models and concepts relate to requirements and specifications.

3.2 Modeling of Behavior

The first questions to be considered in modeling behavior are:
• What happens?,

• In what order?, and
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• What inputs and outputs are involved?

Modeling of functions is the way we address the first of these basic questions. 
The second question is addressed by the ordering of a collection of functions in a sys-
tem. For ordering, a number of concepts need to be represented:

• sequencing, which indicates which functions must precede or succeed others,

• concurrency, describing functions which can occur simultaneously,

• selection, capturing choices which must be made between functions, and

• iteration, indicating which functions are repeated as a block.

For the third question inputs and outputs to the functions are modeled.
For large complex systems it is always necessary to break the system structure 

and behavior into parts, using aggregation, in order to manage the complexity. The 
behavior view can be simplified in another way, by using partial views of the behavior 
which together comprise the behavior. Some examples of partial views are:

• Functional Flow Block Diagrams, for functions and ordering of functions

•  Data Flow Diagrams, DFD’s, (Martin and McClure 1985), (Yourdon 1989) 
and N-squared Charts, for functions and input/output

3.3 Functional Flow Block Diagrams

Functional Flow Block Diagrams, FFBDs, were developed in the late 1950’s by TRW 
Corp. to help describe ballistic missile behaviors which were found to be too complex 
to be adequately described in text. Further work at TRW enhanced the descriptions to 
make them executable, (Alford 1977, 1992). We will introduce first the basic FFBD 
and then discuss the necessary extensions to make the diagrams executable. FFBDs 
are discussed in detail in a number of other reference works (Blanchard and Fabrycky 
1990), (MIL-STD-499 1968), (Kockler 1990). The primary views of behavior mod-
eled with FFBDs are functions, their ordering, and their composition.

3.3.1 Functions
In FFBDs functions are represented as blocks or rectangles labeled with the function 
name. Often a number is assigned to the function and displayed as a banner across the 
top of the block. This number tracks the function location within the hierarchy. (We 
will discuss hierarchy later.) Figure 3-2., FFBD Notation for Functions shows this 
notation.
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3.3.2 Ordering
Ordering of functions is shown by lines connecting the blocks. 

Sequence
A simple sequence is shown by an arrow coming out of the right side of the predeces-
sor and into the left side of the successor. Time in FFBDs flows from left to right. Of 
course, limitations such as page size sometimes cause the diagram to wrap back to the 
left hand side of the page. this is shown in Figure 3-3., FFBD Depiction of Sequence.

Concurrency
Concurrency is represented by an AND relationship. The AND shows that all of the 
branches coming from it can happen at the same time. This is not to say that all of the 
branches have to be performed in parallel only that they can. In the diagram the AND 
is shown as a circle with the word “AND” written inside. All of the concurrent 
branches emanate from the circle. The branches for the concurrency join back 
together with the main sequence arrows when the concurrency is completed. Option-
ally, the concurrency can be completed with a second circle with “AND” inscribed 
and the branches merging into the circle. Choice of which form to use is left to the 
designer or dictated by the use of a particular support tool. Figure 3-4., Representa-
tions of Concurrency in FFBDs shows both forms.

Function_Name

4.1.3

Function_Name

Figure 3-2.  FFBD Notation for Functions

Predecessor Successor

Sequence Indicator

Figure 3-3.  FFBD Depiction of Sequence
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Selection
Selection is represented by an OR relationship. Selection represents two or more alter-
native paths through the functions which can be taken. The FFBD diagram representa-
tion is similar to concurrency with the word AND replace by the word OR. A third 
shorthand form is also used for selection. When a binary choice is made, the selection 
can be shown by two arrows leaving a function block, each labeled with a selection 
criteria. Figure 3-5., Representations of Selection in FFBDs shows the various forms. 
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Iteration
 Iteration is the last of the major ordering operations that is used to model behavior. In 
FFBDs iteration is depicted similarly to the third form used for selection. Iteration is 
shown as an arrow coming out of a decision block which loops backward over a set of 
functions. The backward arrow is labeled with a completion criteria. This is shown in 
Figure 3-6., Iteration in FFBDs.
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3.3.3 Example, Pocket Knife
The FFBD notation introduced so far, function, sequence, selection, concurrency and 
iteration are sufficient to begin modeling the behavior of the pocket knife. We begin 
the modeling by referring to the same usage scenario used in modeling the static con-
text.

She reached into her right pocket and took out the pocket knife. She opened 
the large blade with her thumbnail against the closing force of the knife and 
the knife held the blade open. She grasped the knife firmly. She picked up the 
work piece in her other hand and whittled it to the desired shape by applying 
force to the knife which transferred the force to the workpiece. She put down 
the work piece, closed the knife against the holding force of the knife and the 
knife held the blade closed. She put it back into her pocket.

In considering the static context we focused primarily on the objects that are 
involved in the scenario. From the behavior standpoint we focus on the actions that are 
performed. After both models are developed we will map from the behavior onto the 
structure. Figure 3-7., FFBD for Person Using Pocket Knife, shows the FFBD model 
of the actions performed in this scenario.

Figure 3-6.  Iteration in FFBDs
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This model shows a view of the intrinsic behavior of the Person, the behavior as 
limited by physical reality. The Knife is removed from the Pocket before it is opened. 
The tool is opened before the Work is held because it takes two hands to open the 
Knife. The Work must be held at the same time as it is operated on. The Work is 
released before the tool is closed in order to have a hand free to close it. The tool is 
closed before placing it in the Pocket. The iterative loop allows for the possibility that 
a different tool or different work pieces will be operated on in the same session.

3.3.4 Hierarchy
If we were to attempt to model every function with all of the associated details in one 
diagram, it would quickly become too large and unwieldy. To overcome this limita-
tion hierarchy is used. Hierarchy of functional design provides convenient encapsula-
tions of detail. At the higher levels the function blocks represent complex functions, 
as the design proceeds and the lower levels are reached, the functions are increasingly 
atomic. The numbers which label the function blocks track the level and placement of 
blocks within the hierarchy. At each level a new level of numbering is used. Each 
block within the hierarchy then has a unique number which specifies its location. Fig-
ure 3-8., Hierarchy representation in FFBDs shows the FFBD representation of hier-
archy. 
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Figure 3-7.   FFBD for Person Using Pocket Knife
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Example, Behavior Hierarchy
In one of the functions in Figure 3-7., FFBD for Person Using Pocket Knife, Open 
Tool there is a selection among alternative tools to open. Rather than put that detail 
into the same FFBD, we will use hierarchy to show that information in a separate dia-
gram. A Lower Level FFBD is drawn for Open Tool as shown in Figure 3-9., Lower 
Level FFBD Diagram. The FFBD uses an “Or” construction to show selection. 

The original FFBD model, developed by examining the scenario is not sufficient 
to capture all of the required behavior. The scenario examined the knife in its context. 
To make a complete model we need to expand to include the behavior of the knife as 

Internal Detail 1 Internal Detail 2

1.1 1.2

Higher Function

1

Figure 3-8.  Hierarchy representation in FFBDs

Open
Large Knife

Open
Small Knife

Open
Can Opener

Open
Awl

Open

Open
Screwdriver/

Corkscrew

OR OR

Bottle Opener

Open
Tool

Figure 3-9.   Lower Level FFBD Diagram
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well Figure 3-10., FFBD Diagram for Pocket Knife, shows the simple cyclic ordering 
of the functions. The Knife holds a Tool closed, then holds a Tool open, and can then 
hold the Tool closed.

3.3.5 Input and Output
The ordering of functions requires the capture of their sequence, their concurrency, 
their selection, and their iteration. The Functional Flow Block Diagram is one graphic 
notation that records this information. This information is only a partial view of 
behavior because none of the functions’ inputs and outputs are described. Inputs/out-
puts must be included in the model because they are the entities transformed by the 
functions, because they trigger some functions, and because they provide the infor-
mation about the path to take at some of the selection points among functions. Under-
standing these interactions is essential to understanding the full behavior. In addition, 
the input and output models are required to execute the model and verify their correct 
operation.

Behavior Diagrams 
When Input/output information is added to an FFBD or equivalent diagram, one 
obtains a behavior diagram. Behavior diagrams of this general type were developed 
by Alford (Alford 1977,1992). The Alford type diagrams are rotated 90 degrees so 
that the time flow is vertical and down instead of horizontal, left to right. The Alford 
type diagrams are designed to distinguish among several kinds of concurrency and 
incorporate symbols for each type. In this form they are supported by the RDD-100 
tool, (Ascent Logic Corp.). In a horizontal format behavior is supported by the Core 
tool, (Vitech Corp). There are differences in the notations supported by different 
tools, but the capture of functions, the ordering of functions, and capture of input/out-
puts is common to the different implementations of executable behavior. A related 
representation is that of Statecharts, (Harel 1987), which will be discussed later. This 
is the usual situation: a plethora of competing notations and tools to capture the same 
abstractions without tool support to transform among the notations and tools. 

Hold
Tool
Open

Hold
Tool
Closed

continue till finished with knife

Figure 3-10.   FFBD Diagram for Pocket Knife

Transfer
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For use within this book, the Input/outputs are depicted as ovals, and the dashed 
arrows show the direction of flow of the Inputs/outputs. Such a diagram is shown in 
Figure 3-11., Behavior Diagram for Pocket Knife.

In this simple example the inputs come from context and outputs return to the 
context. The behavior of the person in the context results in a more complex behavior 
diagram as shown in Figure 3-12., Behavior Diagram for Person Using Pocket Knife

Hold
Tool
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Hold
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Closed

Open
Force Open

Tool

Close
Force

Closed
Tool

continue till finished with knife

Transfer
Force

Input
Force Output

Force

Figure 3-11.   Behavior Diagram for Pocket Knife
78



Basics of Behavior
. 

It provides an executable description of what the person does. The process 
begins with a pocket knife in a pocket and a piece of work. It ends with the pocket 
knife back in the pocket and a modified piece of work. The excitations to which our 
subject system pocket knife must respond are the input open force from the function 
open tool, The input force from the function operate tool, and the input close force 
from the function close tool. The response from the pocket knife to open force is an 
open pocket knife with the selected tool held open. The response from the pocket 
knife to the force is to transfer the force to the workpiece in the form of cutting or 
screwing or however the selected tool applies its force. The response of the pocket 
knife to close force is a closed pocket knife with the tool held closed. Taken together, 
the two behavior diagrams can be put together to form a single behavior of the pocket 
knife in its context. Figure 3-13., Behavior Diagram for Pocket Knife in its context 
shows this single diagram.
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Figure 3-12.   Behavior Diagram for Person Using Pocket Knife
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3.4 Data Flow Diagrams

As noted earlier Functional Flow Block Diagrams are a useful partial view of behav-
ior which suppresses all input/output information. The behavior diagrams just dis-
cussed added in the input/output information. If we subtract the sequencing 
information from the behavior diagrams what is left are the elements of a Data Flow 
Diagram. The Data Flow Diagram and N-squared chart are useful partial views of 
behavior which are captured in two different notational styles and which suppresses 
the information of ordering of functions.

. 

Figure 3-14., Input-Output Diagram for Person shows the behavior diagram 
with the sequencing information suppressed. The notation differs from DFD notation. 
In DFD notation the functions are in ovals not in rectangles. The inputs/outputs are 
annotations on arrows that go from one function to another Data Store are shown as 
The name of the data store with a line above and below the name. Figure 3-15., Data 
Flow Elements for Pocket Knife Context shows the input output diagram of Figure 3-
14. recast as a data flow diagram. The diagram consists of four disconnected elements 
sine the diagram does not include the pocket knife itself.
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3.5 Representation of Behavior as State

Another view of behavior which has gained usage in recent years is state modeling. 
This provides a powerful and convenient method to capture the pattern of activity for 
a given structure. A number of diagraming techniques are used for modeling behavior 
with state representation. Chief among these are:

• State Charts, and

• State transition diagrams.

These diagrams are very useful for generating implementations at leaf level where 
complex trade-off is not needed. When trade-off is yet to be performed, however, state 
representations can obscure the possibilities for trade-off or become unmanageably 
large.

Two different formalisms are used for representing state. In the first, known as 
Mealy machine the functions, or activities, are modeled as taking place during the 
transitions between states. (Mealy 1955) In the second the functions are modeled as 
taking place while the machine is in the state. These are known as Moore machines. 

Figure 3-15.   Data Flow Elements for Pocket Knife Context
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(Moore 1964). The two representation are interchangeable in terms of their ability to 
model a problem (Hopcroft and Ullman 1979). It is important, however, to under-
stand which approach is being used when interpreting a state diagram.

For any given FFBD a state diagram can be constructed which models the same 
set of functions. To see that this is the case consider the transformations necessary to 
get from an FFBD to a state model. They are the same transformation used to change 
a nondeterministic finite automata into a deterministic automata. Assuming that the 
state representation will be a Moore machine, the transformations are as follows:

• For each function in the FFBD create a state. Assign the function as the activ-
ity to be performed while in the state.

• For each sequence block in the FFBD construct a transition between the states 
representing the functions on either end of the sequence. These transition are 
labeled as default, or epsilon, transitions.

• For each selection in the FFBD create a transition to each of the selection 
choices. Label each transition with the value which corresponds to the selec-
tion criteria.

• For each concurrency in the FFBD create new states for each of the possible 
combinations of concurrency. That is create a new state for each permutation 
of functions that may be activated concurrently. Replicate all transitions from 
the original states to each of the new sates. Add transitions to each of the new 
states from the state(s) representing the function(s) which proceeded the con-
currency in the FFDB.

This process, of course, can lead to a very large state model if concurrency was used 
in the FFBD model. Statecharts, (Harel 1987),were developed to overcome this expo-
nential expansion problem. 

Statecharts
 Statecharts have the advantages of being hierarchical, of having a well defined rela-
tionship with functions, and of defining “and” states to represent concurrency. The 
“and” states that are used with statecharts are really composite states which group 
together several substates into a single entity.

Statecharts represent states as shown in Figure 3-16., States in Statecharts.
83



Basics of Behavior
Statecharts in OMT use the Moore formalism which implies that the functions 
and activities occur within the state. In the statechart diagram the states are shown as 
rounded contours with transitions appearing as arrows. Within the contour for a state 
the actions of the state are written. Each state can have an entry action, a do: action, 
which is the main function of the state, a list of actions to perform when triggered by 
events, and an exit action. The various actions are all called activities. Functions in 
FFBDs correspond to Activities in Statecharts. Sequence in FFBDs results in sequen-
tial sates in statecharts. A selection in FFBDs corresponds to transition to states with 
corresponding activities in statecharts. Concurrency in FFBDs, “and”, corresponds to 
“and” states in statecharts.

Figure 3-17., FFBD for Pocket Knife recast as a Statechart gives an example of 
a statechart diagram.

State Name

entry / entry-action
do: Activity - A
event-1 / action 1
event-2 / action 2
...
exit / exit-action

Figure 3-16.   States in State-

not finished with knife
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from Pocket
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do: Close
     Tool

do: Release
     Work

do: Open Tool

in Pocket

Use Tool

do: Operate
     Tool finished

Figure 3-17.  FFBD for Pocket Knife recast as a Statechart
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Statecharts handle hierarchy in a similar way to FFBDs. Each of the state bub-
bles can be decomposed into a finer level of granularity. This is the same mechanism 
FFBDs employ. In contrast to FFBDs, however, the transitions in statecharts can also 
be refined in statecharts at lower levels. 

From a modeling standpoint we have shown that statecharts work fairly simi-
larly to FFBDs for capture of behavior. A problem arises, however, when the time for 
trade-off analysis and mapping to structure occurs. The statechart approach assumes 
that there will be one piece of structure which is implementing, and therefore, respon-
sible for maintaining the state information. This tying of behavior model to a prede-
termined system structure places strong limitations on trade-off.

3.6 Pocket Knife Example, Summary

Together, Figure 3-1., Structural Context of Multi-Tool Pocket Knife and Figure 3-7., 
FFBD for Person Using Pocket Knife define the static associations of the pocketknife 
and the dynamic interactions. They define the interconnections of the pocket knife 
with its environment. They define what that environment does to which the pocket 
knife must respond, the excitations, and they define the response of the pocket knife. 
They are computer executable. In the aggregated form they can be used to make sim-
ulated estimates of system performance.

Although the static and dynamic models of context fully define the system 
(pocket knife) environment, they contain no information about the internal structure 
of pocket knife. They capture what the subject system must do in response to the 
external systems, not how the subject system is to be built. A final step is necessary to 
go from the design as it stands to a complete system definition. The behavior must be 
mapped onto the static structure. This is discussed in detail later in this book.

3.7 Information Model for Behavior

Behavior will now be described with a more formal approach using an information 
model. We will use the OMT notation to describe the structure of the information 
needed to describe behavior. Figure 3-18., Information Model for Behavior is an 
information model which defines Behavior. The associations it presents are each 
described.
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3.7.1 Behavior
The key element of this information model is the behavior object. By understanding it 
and its associations readers will come to understand what is meant by behavior.

As shown by the aggregation, Behavior is built from Input/Output items, Func-
tions, and Control Operations. The cardinality shows that the behavior is not made of 
just one of each item but is a multiplicity of each, as many as are required to define the 
behavior. Furthermore, there is a relationship between Function and Input/output and 
between Function and Control Operations which describes how many of each exist 
within the behavior.

Behavior

Input/Output 
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Function
Duration
Generation
   rate
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   inputs
Generate
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ordered
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Figure 3-18.   Information Model for Behavior
86



Basics of Behavior
3.7.2 Input/Output
Input/Output items are passive objects. For the behavior model view we need to cap-
ture the attributes that characterize the Input/Output. These includes a range of size of 
the item and tolerance information. Each Input/output is associated with at least one 
Function. Most Input/output are associated with at least two functions: one which 
generates it and the other which consumes it. An Input/output can be broadcast to all 
Functions.

Each Function is associated with two or more Input/output items. 

There are two important independent classifications that define subclasses of 
input/output relating to Behavior. The subclass classified by effect designates non-
triggering and triggering items. The subclass classified by condition designates input/
output items that do not define criteria for decision and those that do define criteria 
for decision.

Input/output Triggering Items turn functions on and off. There can be more than 
one triggering item for a function, and more than a single function can be triggered by 
a single triggering item. 

Condition items contribute to the order of functions by providing the criteria for 
selecting among alternative paths in a behavior. 

3.7.3 Function
Function is the other major constituent of Behavior. For the behavior model we need 
to capture information about the Function relevant to providing a simulation of the 
Behavior. This information includes

• Duration, how long this Function takes to execute as a time or probability esti-
mate,

• Generation Rate, the speed at which it generates outputs, and 

• Consumption Rate, the speed at which it consumes inputs. 

In addition functions have two operations: consume inputs and produce outputs.

Function is interconnected with the Control Operation class marked with an 
ordered by. From this we learn that a Function can be ordered by many Control Oper-
ations and that a Control Operation can order many Functions. 
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3.7.4 Control Operations
Control Operations determine the order in which multiple functions are activated. 
They are any one of four types. The simplest is sequence, as the name implies, this 
says that one function comes after another function. Selection is the basic conditional 
operation. Based on some input/output item to which it is associated, the selection 
control operation determines which of several possible functions to perform next. Iter-
ation to a limit is a special case of sequence and selection. It is such a common case, 
however, that it is elevated to a control operation of its own. In essence it is the loop-
ing operator. Concurrency describes the reality that more than one function is active at 
the same time. 

The expression of concurrency is critically important. Early in the analysis of a 
system there are often many functions which are known to be important and are 
known to be concurrent. If the concurrency of the functions is captured in the behavior 
model, independent of structure, then the concurrent functions can be allocated to 
objects (resources) in different ways to provide major design alternatives.

As seen from the information model, concurrency can be represented two ways, 
as parallel function and as state. The allocation of the concurrent functions to objects 
defines the state structure for those objects. A different allocation will result in a dif-
ferent state picture for the objects. For this reason it is useful to capture behavior with 
the functional representations when developing requirements and to add state views as 
the allocation to objects is established.

The set of control operations shown in here is a minimal set. More complex con-
trol operations can be constructed from this simple, minimal set.

3.7.5 In Summary
In total, the information model defines a behavior as a collection of inputs and outputs 
together with some functions. These function are ordered by a set of standard control 
operations. The functions consume the inputs and produce the outputs. The inputs pro-
vide the key values for triggering the functions and controlling the selection decision 
making. Behavior and these elements are made hierarchical by the structure associa-
tions.

3.8 Information Model for Input/Output

There are several additional classifications of input/output which are important to the 
engineering of systems and were not included in the discussion of behavior. These 
additional classifications deal with issues such as the physical nature of the input/out-
put and its longevity whether it is consumed promptly or is stored. These additional 
classifications are important in some applications and are unimportant in others. They 
are shown in Figure 3-19., Information Model for Input/Output.
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Classification by condition and by effect have already been discussed. Classifi-
cation by physical nature is important to the general case of systems. The input/output 
may be a material thing, it may be energy in one of its many forms, or it may be infor-
mation. Software engineering and software engineering methodologies often assume 
that all input/output is of the class information. This viewpoint needs to be general-
ized to include material objects and energy when these techniques are applied to sys-
tems.
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Figure 3-19.  Information Model for Input/Output
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Input/output of the class Triggering I/O has two subclasses depending upon 
whether the I/O has content. The content may be information, a physical thing, or 
energy. Very often in the physical world the triggering and the physical content are 
intimately associated. This is the case when a person or animal steps into a bear trap 
with a foot or when smoke sets off a smoke alarm. Methodologies or notations that 
insist that triggering be disconnected from content in their basic abstractions need to 
allow for association of content with triggering to represent systems in which that 
association is a reality. 

An equally important concept is that of how long an input/output persists, its 
longevity. Is it stationary and persists in the system for some time before being con-
sumed, or is it transitory and consumed as rapidly as it is produced. Data in software 
may belong in either of these subclasses. In the worlds of chemistry and biology some 
substances are produced as intermediate products and have only a transitory existence. 
Others may remain for long periods of time even when that is undesirable as in the 
case of PCB contamination. It is important in many applications to deal with the sta-
tionary or transitory aspects of inputs/outputs because of the practical implications. 
The assignment of inputs/outputs to these two subclasses is very dependent upon the 
application and on the critical issues and time scale important to the application. 

For input/output that is persistent, there are two further important subclasses. 
One of these is based on the concept of access. The access to the persistent things may 
be available to all, Global I/O, or is it may be restricted to a particular group, Local I/
O. 

A final classification is based on the manner in which Input/output is stored, 
storage. Some things are themselves stored physically as stock. They are placed in a 
warehouse of some kind and one can only take out as many or as much as was put in 
because of the physical laws of conservation of mass and energy. Examples are TV 
sets in a warehouse, or the potential energy in the water behind Hoover dam. 

In many modern instances the physical item itself is not stored at all. What is 
stored is a replica of the object in association with a machine which can use the replica 
to rapidly make as many of the objects as desired. For many applications people speak 
of this situation as though the actual object were stored, and they abstract away all of 
the details of creating the replica, storing it, and creating copies of the original object. 
For their practical purposes they have no need for this detail so they treat the situation 
as though the object were stored and consider the time to create the object as an access 
time. This is the way data storage is considered in software engineering. It is not data 
that is stored on a magnetic disk, but tiny regions of magnetization. This detail can be 
neglected by many, but not by those who design and manufacture the magnetic storage 
devices. There are many examples in the physical world such as negatives of photo-
graphs or dies for plastic injection molding machines. The unique characteristic of this 
subclass is that one stores an object once, really the replica, and can get as many cop-
ies of it as desired. 
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3.9 Relationship of Behavior and Structure

Behavior and structure, as we have discussed, can be viewed in many ways by depict-
ing part or all of the information. The two must be modeled separately for the sake of 
finding alternative solutions and performing trade off analysis. This does not say, 
however, that there is no relationship between the them. Obviously, there must be. 
This relationship is modeled in Figure 3-20., Behavior and Structure Information 
Model.

3.9.1 Structure Models
Classification, Interconnection and Aggregation are the three major modeling 
abstractions.The can be used in diagrams separately or in combination. Consequently, 
the classification is shown as inclusive (the dark triangle) in Figure 3-20., Behavior 
and Structure Information Model.
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Because the behavior is mapped to structure, the behavior and structure models 
are not completely independent. The central part of the figure shows a mapping of 
Behavior onto the Objects which will provide the Behavior. This mapping encapsu-
lates the behavior in the objects. The list of functions or methods in the class definition 
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Figure 3-20.   Behavior and Structure Information Model
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box representing objects must be consistent with the mapping of Behavior. Because 
the Behavior includes all Inputs/outputs, the mapping of Behavior to Objects estab-
lishes which active objects inter communicate via Inputs/outputs. The mapping estab-
lishes the interconnections between active objects that support input/output. The 
structural interconnection association must be consistent with the results of the map-
ping or allocating behavior to objects.

It is very important to realize that one cannot predict the emergent behavior of a 
system from the properties of the parts alone. How the parts interact is critical. In the 
simple case of the pocket knife, the hold tool open behavior cannot be realized until 
the knife case, the tools, and the spring are riveted together. It is the dynamic interac-
tion of the parts which allow a tool to be opened or closed easily, yet held in place 
firmly. This is the reason for allocation of behavior onto objects such that the interac-
tion of the objects will produce that desired behavior.

3.9.2 Behavior Models
At the bottom of, Figure 3-20., Behavior and Structure Information Model, there are 
shown two ways of representing concurrency. In one type concurrency is represented 
using state, and in the other using parallel functions. 

A complete view of behavior using parallel functions requires capture of Func-
tions, I/O and Control Operations. Behavior Diagrams are this type of view of Behav-
ior. There are two partial views. The first is of Function and Control. Functional Flow 
Block Diagrams provide this type of partial view of Behavior. The second partial 
view is of Function and Input/output. Data Flow Diagrams, N-squared charts, and 
IDEF0 charts provide this type of partial view of Behavior.

A complete view of Behavior using state requires capture of State, Functions, 
Input/output, Events and Control Operations. No single diagram capturing all this 
information is known to the authors. Rather, two partial views are used to model the 
Behavior. The first is of State, Control, and Events. State Charts provide this type of 
partial view of Behavior. The second partial view is of Function and Input/output. 
Data flow Diagrams, N-squared Charts, and IDEF0 Charts provide this type of partial 
view of behavior. The literature describing state charts refers to functions with the 
word activities. The activities are modeled in a partial view of the executable behav-
ior and can be allocated to objects in the same manner as when using behavior dia-
grams. 

3.10 Models and Text for Requirements/Specifications

Models and text capture the same basic information for requirements and specifica-
tions. Often requirements/specifications are written as “The system shall do some 
described task.” In this form it is an incomplete description for the implementer. To 
be complete a requirement/specification in text needs to include:

• The name of the external system causing the excitation 
93



Basics of Behavior
• What the external system does

• The outputs from the external system to the subject system

• All pertinent conditions

• What the subject system does in response

• All quantitative aspects of the response, how fast or how much

• The outputs from the subject system

• All pertinent conditions

• The names of the external systems which receive those outputs

Such a complete statement is the equivalent to a behavior model for the external sys-
tem linked to the response from the subject system.

A similar close relationship exists between behavior models and the operations 
concept in text. The operations concept describes in narrative form what the external 
systems do and what the subject system does in response. They are written from the 
standpoint of how one would experience the system rather than as a list. If one exe-
cutes, either mentally or by computer, a linked behavior model of external system and 
subject system, like Figure 3-13., Behavior Diagram for Pocket Knife in its context on 
page 80, then a text description of what happens in the model is the operations con-
cept. 

This redundancy is not wasteful.The requirements/specifications in list form are 
very useful for contractual purposes because they provide a check list of what the 
implementer must deliver. The operations concept in narrative form provides a story 
form of exactly what the system is supposed to do. It is very valuable for those who 
are not going to immerse themselves in modeling. These text descriptions, however, 
cannot be computer interpreted because they are in natural language text. They will 
remain ambiguous because natural language is not precise. The use of models aug-
ments the text forms by providing computer executable and transformable information 
that is free from ambiguity and needed by the engineers who will design according to 
the specifications. The art of engineering is to apply all these descriptions in text and 
models to the problem at hand with precision and without wasting engineering effort. 
It is an art.

3.11 Summary for Behavior

This chapter has described behavior with an informal approach and a formal approach. 
We conclude with a textual definition of good practice in modeling.
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Behavior is a rigorous description of what a system is to do. It includes the func-
tions to be performed, the sequencing control of those functions and the inputs and 
outputs from the functions. A good modeling approach for behavior keeps the behav-
ior information separate from the structure information. It also captures the behavior 
information with enough rigor to allow the behavior to be executed and analyzed.

3.12 Exercises

1. Examine Figure 3-7., FFBD for Person Using Pocket Knife on page 75.

a. Why are “Hold Work” and “Operate Tool” concurrent. 

b. If we add additional objects to the context, what other objects beside person 
could be used for one or the other of these functions? 

c. Would the behavior model need to change because of the added objects? Why?

2. Model a person as your subject system in the context of getting, dishes from the 
cupboard, food from the refrigerator, cooked food from the stove and placing these 
items on the dinner table.

a. Create the Object descriptions for each of the major objects. Include attributes 
and functions in each Object description.

b. Create a static context model for Person.

c. Create a functional flow block diagram for the Person. Keep the functions con-
current if reality does not require a sequence.

d. Create a behavior diagram for the person.

e. Assign time estimates for each of the functions and make time line estimates 
for the concurrent sets of functions.

f. Assign the work among three people to finish in minimum time.

3. Develop a behavior model for baking chocolate chip cookies.

4. Physically, it is possible to use pocket knifes in ways for which that they are not 
designed. 

a. What exceptions were not accounted for in the design? 

b. How does the model need to change to reflect the exceptions?

c. Do the changes improve the usefulness of the model?
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Core Technical Process
4.1 Process

A process is the sequence of actions done by people and machines. What engineers 
do when they define a complex system is the Systems Engineering Process. The engi-
neering process applied to complex systems has been described using text in books 
and standards. This chapter solidifies these ideas and makes them explicit and rigor-
ous with models of behavior and views of behavior. The models separate and distin-
guish several different processes that are described in the field of complex systems:

• The Product Life Cycle - The sequential phases of development and use 
through which any product evolves.

• The Systems Engineering Process - The ordered set of engineering steps that 
engineers use to go from user needs to specifications for all of the components 
to be designed or procured. Two sub-processes are considered: a Systems 
Engineering Management Process and a Systems Engineering Technical Pro-
cess

• The Acquisition Process - The set of tasks required of the product engineers 
and manufacturers to assure those in authority that the project is meeting all 
goals. There are numerous acquisition processes in use.

• The Design Engineering Process - The ordered set of engineering steps that 
engineers in the many design disciplines, such as mechanical, digital, and soft-
ware engineering, use to design their components.

• The Manufacturing Process - The ordered set of implementation steps that 
manufacturing engineers use to implement the manufacturing facility and to 
produce the product.

Models can explain these processes in detail, show their relationships, and help engi-
neers follow the processes. Words like process and methodology are used with very 
different meanings in different organizations and disciplines. They are defined here in 
a way that is useful in discussing engineering activities.
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The technical work of systems engineers, the technical process, is the focus of 
this chapter. It will be described with a simple core process with a few major steps that 
are applied repeatedly as the system specification develops. The repeated use of a sin-
gle core process is powerful in practice, and it simplifies both training and tool con-
tent.

4.1.1 Process, Methodology, and Tools
1. Definition of Process: A process is an ordered set of work steps, done by peo-

ple and machines, that are utilized to produce a set of outputs from a set of 
inputs. 

It can be executed by people, machines, computers or a combination of these.

It comprises a complete description of the process which includes naming the 
steps, describing how the steps are ordered, and describing the inputs and out-
puts among all of the steps.

•  The description uses executable models of behavior.
•  The models can be expressed in any graphic or text language that spans the 

abstractions needed and that is executable.
•  This process as defined here is called meta-process in some disciplines 

where “meta” means “a higher form of”
• The meta-process model captures the inherent concurrency of steps that may 

be performed in parallel and do not have to be performed in a particular 
sequence

2. Definition of Methodology: A methodology is a particular implementation of a 
process. 

The steps in the process are specified in great detail and alternatives in the 
ordering of the work steps or in notation and views of information are removed 
and standardized.

A methodology insures that a large number of workers performing the same 
process will do each step in the same way. On large projects this is essential for 
intercommunication among the people and ability to perform the work repro-
ducibly.

3.  Definition of Tools: A tool is a thing used by people to automate their work

 Many tools are developed to automate a part of a single methodology
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Some tools are developed to automate a meta-process and may be used inter-
changeably with a number of different methodologies.

Figure 4-1., Associations of Meta-Process, Methodology, Tools, and Infrastructure 
shows the associations among meta-process, methodology, tools, and infrastructure 
for engineering complex systems. There are many systems Engineering Methodolo-
gies which particularize, taylor, and instantiate the single Systems Engineering Meta-
Process. The figure shows that each Systems Engineering Methodology defines a set 
of views and notations that will be used as a standard by all the workers following 
that methodology.

The Tools are embedded in the Systems Engineering Infrastructure of businesses and 
customers.

 Investment in training in methodology and tool use is required to make the 
infrastructure effective and this is usually the most expensive investment. A plethora 
of methodologies, views and notations exists at present. How they differ or are equiv-
alent is difficult to see by comparing them unless one can refer to a meta-process. At 
present there exists a plethora of tools which automate parts of the many methodolo-
gies and the tools do not intercommunicate. Often a set of methodologies are chosen 
that span the work, and the available tools are interconnected with custom interfaces 
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(Kronlof 1993, 11-12). For N tools there are N(N-1)/2 interfaces and the tools must 
treat data with consistent meanings (semantics) and functionality. A new release of 
any tool can affect (N-1) interfaces.

By learning what systems engineers do at the meta-process level it is possible to 
understand what are the possible useful views of information and how the methodolo-
gies are similar and different. In “Basics of Behavior” on page 67, we described the 
possible views of information. Tool integration requires that the same piece of infor-
mation always be used with the same meaning by all the tools. A well defined process 
description is a prerequisite for integration.

4.1.2 Product Life Cycle, Acquisition, Systems Engineering Process
The systems engineering process describes the engineering work steps. It is applied at 
many of the phases of the product life cycle which describes the phases or steps 
through which a product evolves. There is often a blurring of the distinction between 
the systems engineering process and the product life cycle phases. 

It is helpful to decompose the systems engineering process into two sub-pro-
cesses, a management process and a technical process, which can be discussed sepa-
rately. Figure 2-2., Part List for System Engineering Process shows one level of this 
decomposition. 

The acquisition process is the process used by government or a company to 
acquire product from a supplier. The systems engineering process generates the docu-
ments required by the acquisition process. Often the engineering steps executed are 
driven by the need to produce documents. Best practice dictates generating the docu-
ments required by the acquisition process from the needed engineering steps.
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100



Core Technical Process
The basic relationships among Product Life Cycle, Acquisition Process and 
Systems Engineering Process are clarified in Figure 4-3., Associations of Process, 
Product Life Cycle and Acquisition.

This figure asserts that there is a single Product Life Cycle that is used by both Gov-
ernment and Business. Although different industries name the parts of the product life 
cycle differently and have different degrees of emphasis on different phases, products 
go through the following phases:

1.  Domain Analysis Phase: Domain Analysis to define a product line and reus-
ability strategies for products or product components.
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2. Concept Phase: Concept Analysis to define a business strategy, a product con-
cept and establish its value to users. 

3. System Phase: System Analysis to define and specify the product, its compo-
nents, and cost and performance

4. Feasibility Phase: Detailed component design, implementation, and integration 
for an engineering model, a prototype, or partial prototypes sufficient to show 
performance and manufacturing feasibility.

5. Initial Manufacture Phase: Low volume manufacture in pre-production vol-
umes with release of product to customers (perhaps selected customers). In the 
commercial world this is the first point at which customer response can be mea-
sured and product success can be estimated based on actual response. It is the 
first point for revenue payback on the development investment for businesses 
which define and market their own products.

6. Full Scale Manufacture Phase: Full scale manufacture and shipping of product 
to customers. It includes field support and product enhancement.

7. Field Support Phase: Customers are notified that manufacture has stopped and 
that field support with spare parts continues.

8. Product Removal Phase: Product is removed from the market place, perhaps 
with incentives to customers. It is often replaced with a more advanced product 
which is in Phase 5. Product disposal occurs, sometimes in an ecologically 
sound manner.

The Product Life Cycle is used by the government and by many commercial busi-
nesses. It is a process, a time ordered set of phases, a behavior.

The Systems Engineering Technical Process is the engineering work that sup-
ports and specifies the product in all the phases of the Product Life Cycle - specifica-
tion, cost and performance from Domain to Concept through Product Removal. The 
core steps in the Technical Systems Engineering Process are performed repeatedly and 
are concentrated in the early Product Life Cycle Phases: 1. Domain Analysis Phase, 2. 
Concept Phase and 3. System Phase. If there are changes or problems during later 
phases, this technical work will have to be revisited during the later phases. 

The many different Acquisition Processes, both commercial and government, 
require reports of technical progress to assure those with authority that the project is 
progressing satisfactorily. These documents are not the systems engineering technical 
work. They are generated from the information produced by the Systems Engineering 
Technical Process. They vary tremendously in content, level of detail, and format.

The Systems Engineering Management Process supports the Systems Engineer-
ing Technical Process with planning, review, and coordination of issue resolution. It 
makes it work.
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The Systems Engineering Technical Process delivers all of its detailed technical 
engineering specifications to the many different Design Engineering Disciplines 
which will perform the detailed design of the mechanical, electrical, digital, software, 
and people components for the system. The specifications need to be complete and 
correct. They need to be delivered in the set of views and notations of the designers.

 In going from user needs to the specifications to the designers, any large com-
plex system is decomposed into a set of parts, a tree of several tiers of decomposition. 
A core set of engineering steps are applied repeatedly to the subsystems and compo-
nents at each of these tiers.

4.1.3 The Systems Engineering Process Model
Any process, whether used for systems engineering, for semiconductor chip manufac-
ture, for business marketing, or for cooking food can be described as a behavior. This 
involves the steps that are taken, the inputs and outputs for each step, and the ordering 
of the steps. In order to clarify the Systems Engineering Process yet keep the figures 
simple, the process will be described with a Functional Flow Block Diagram view 
that shows the steps and their ordering.

The Systems Engineering Management Process is broken into three pieces: 
project planning, review and replanning, and change control. Correspondingly, there 
are a set of six modeling steps, core steps, in the Systems Engineering Technical Pro-
cess that define it. They are used repeatedly as the system is decomposed into sub-
systems and then sub-sub-systems. Figure 4-4., Extended Part List for System Engi-
neering Process shows these associations as a parts list.
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Systems Engineering Management Tasks
The Systems Engineering Management Process is built from three major sub-sub-pro-
cesses which are ordered as shown in Figure 4-5., Model for the System Engineering 
Process. These three sub-sub-processes are:

1.  Project Planning Process

Creates an initial systems engineering management plan, SEMP, for the project 
defining tasks, resources, resource assignments, milestones, costs and schedule 
at each milestone.

The SEMP is a high level plan which requires additional detail as the project 
evolves

The SEMP schedules the deliverable items required by the Acquisition Process
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The SEMP must be modified as the market changes, customers change what 
they want, engineers and others discover issues which require a change in the 
plan to resolve the issues. The next two processes address these changes.

2.  Project Review and Replanning Process

This process monitors the planned forward tasks and team performance for the 
systems engineering technical work, the design, the implementation and inte-
gration of components and the validation of the system.

This process provides the reviews as required by the evolving SEMP. The 
reviews are both frequent and fine grain at the level of contributing engineers, 
and periodic and high level for customers and management.

The purpose of review is to discover issues as early as possible so that they 
may be evaluated and corrected as early as possible to limit their cost and 
delay. 

This process modifies the SEMP as the appropriate resolution of issues is dis-
covered. 

3.  Change Control Process

This is a reverse process. It analyzes the impact of the issues discovered and 
establishes how resource must be redirected and to what extent work already 
completed must be revisited and modified.

Efforts as far along as step 6., integrate components, may have to be redirected 
back to step 4. if requirements are altered late in the project.

Figure 4-5., Model for the System Engineering Process, is a functional flow 
block diagram view of behavior. The FFBD shows the steps of the Systems Engineer-
ing Management Process as dark blocks, and the steps of the Systems Engineering 
Technical Process as a white block. There are design and implementation steps which 
are executed by other engineering and manufacturing disciplines. These steps are 
shown in blocks 5. and 6. of medium darkness. The Systems Engineering Manage-
ment Process assists these two steps with resources, planning and resolution of sys-
tem level issues. 
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Because of the existence of the issues and the Change Control Process there is a well 
defined way to analyze the impact of any issue, modify the engineering, manufactur-
ing, and integration work. The changes are captured by replanning and adjusting 
reviews. 

 It is not possible to show all of the possible feedback arrows from later efforts to 
earlier efforts because they may start anywhere and go back anywhere depending 
upon the issue. 
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The steps of the systems engineering process are applied most intensively to the 
first five phases of the Product Life Cycle: Domain Phase, Concept Phase through 
Initial Manufacturing Phase. Systems engineering management tasks or technical 
tasks may be required during the latter three phases of the Product Life Cycle, Full 
Scale Manufacture through Product Removal, when system level issues arise. 

Systems Engineering Technical Tasks
The Systems Engineering Core Technical Process is applied iteratively at each tier of 
the product decomposition. The Core Technical Process is applied successively to the 
business using the product, to the product, to the product subsystems, the product 
sub-subsystems until specifications are available for the components to be designed 
by the different engineering specialities. At each tier the process is applied twice: first 
to analyze the context of the subject under study and second to analyze the subject 
itself for decomposing it into components. 

The Systems Engineering Core Technical Process is composed of six major 
steps which are discussed in detail in the next section.

4.2 The Core Technical Process

Figure 4-5., Model for the System Engineering Process, shows how the core technical 
process serves as one of the steps in the systems engineering process. It is applied 
repeatedly at all tiers of the system part tree. It is applied twice each tier; once to the 
context and once   to design the system in terms of its subsystems. From the view-
point of the product life cycle it is applied repeatedly from  domain and concept anal-
ysis through definition of individual components.

Figure 4-6., FFBD View for the System Engineering Core Technical Process, 
shows the order of the six engineering modeling steps that make up the core technical 
process.
107



Core Technical Process
4.2.1 The Six Steps in the Core Technical Process
The six steps accomplish the following tasks:

1. evaluates and categorizes available information and obtains missing informa-
tion. 

2. defines the criteria for optimization, the effectiveness measures. These are a 
small subset of all the requirements; perhaps three to fifteen in number even for 
large complex systems. They are the criteria that mean success or failure. 

3. defines the behavior that is desired with an executable model. 

4. defines executable structure models of the alternative sets of things, objects, 
from which to build the system. In either step 4.3 or step 4.4 an allocation of 
behavior onto objects is made. Different sets of objects can be used to build the 
system and for any of these sets the behavior can be partitioned among the 
objects in many different ways. These alternatives produce a number of alterna-
tive designs, or architectures. 

5. trade-off, selects among the alternative designs or architectures. Any design to 
be feasible must meet all of the performance requirements at system level. The 
best feasible design is selected based on the effectiveness measure values. This 
is the optimization process. It is a key best practice in the engineering of com-
plex systems. One possible branch from Step 5 is an iteration back to the begin-
ning made necessary by no alternative design or architecture meeting the 
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requirements. When this occurs, the steps 1 - 5 are repeated to find feasible 
solutions, or requirements are relaxed so that a previous non-feasible solution 
is accepted, or the project is terminated for budget and schedule overrun, or 
simple impossibility.

6. creates a plan, when a feasible and near optimal design or architecture has 
been found. It provides an implementation plan for the selected design or 
architecture. The plan takes into account identified issues, successive product 
releases, risk remediation, partial builds for early validation, time to market, 
budget, and available resources.

Steps 2, 3, and 4 are concurrent activities. They can be ordered and some methodolo-
gies do this. In practice it is found that engineers move their attention among these 
three tasks. As understanding progresses in one of the tasks, it suggests changes in the 
other two. 

These six core steps in the Core Technical Process are not applied once for com-
plex systems, but twice each tier over all tiers of the system part tree. These core steps 
are described in more detail below. A chapter is devoted to each of them to define the 
subsets they contain and to illustrate the work with an example. Each chapter pro-
vides an information model (structure of the information item associations) for each 
of the steps.

 Assess Available Information 
The first step is to Assess Available Information. That information may be in text 
form, in rigorous models, or in the minds of a collection of potential users of the sys-
tem. This step involves collecting available information and categorizing it in terms 
of its source, its quality (what is wrong with it), and how it is to be used. Additional 
information is gathered if necessary. The information is upgraded and corrected as 
necessary. If prior work has been done thoroughly and rigorously with modeling, 
there is a minimum of activity in this step.

If the information is provided in the form of rigorous executable models there 
will be a context model both static and dynamic for the system or components under 
consideration. These models will include the interfaces associated with assembly of 
the components to make a whole, the excitations of the system or components, the 
conditions under which this occurs, and the responses to those excitations.

When the available information has been assessed the next steps in the Core 
Process are undertaken. The next three steps are interdependent and they are carried 
out concurrently. 
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Define Effectiveness Measures
Effectiveness Measures are the small subset of the requirements that are so important 
that the system will fail if they are not met and will be a hugh success if they are met. 
They are the criteria used to make the trade-off decisions of what to build. The design 
of a system is an ill posed problem that has no solution without a set of criteria to 
guide choices. They correspond to the regularization functions used in optimal control 
or in calculus of variations.

The effectiveness measures are critically important because they are the criteria 
that drive the system solution that is found. They are critical because all the stakehold-
ers - engineers, management, users and operators - must agree on them or there will be 
future problems. If these criteria are not both correct and agreed to, then the system 
development will be plagued with costly requirements changes and may miss its mar-
ket. The effectiveness measure results are extremely useful in reviews with manage-
ment, users and operators who do not want to know all of the technical engineering 
detail but do want to know about these critical system criteria. 

 Effectiveness measures are ranked by a set of priorities that can be established 
by statistically valid methods (Saaty 1983). The effectiveness measure values are 
either computed from the properties of the system components and their behavior, or 
are established by group surveys which establish user preferences. The computations 
are based on mathematical models that use values of attributes. 

Create Behavior Model 
In systems engineering the system is described with separate views of behavior and 
structure so that alternative designs can be found by reallocating behavior among 
objects.

The behavior model captures what any thing, or object is to do. It contains 
enough information to be executable. The model must capture all of the steps or func-
tions involved in the behavior, how the functions are ordered, and all of the inputs and 
outputs of the functions. If the ordering of the functions allows alternative responses 
(paths) then the conditions for the alternative paths must be captured. 

When the six core steps are applied to context, the behavior of the external sys-
tems which excite the subject system is captured. The response of the subject system 
to these excitations is also captured as a behavior. The excitations and responses con-
stitute the functional requirements for the subject system.

When the six core steps are applied to the subject system, the behavior model 
refines the behavior of the subject system in greater detail. The level of detail must be 
sufficient to allow the subject system behavior to be partitioned among subsystems 
from which the subject system will be built.

It is the structure model that describes the structure of the context and the design 
of the subject system. 
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Create Structure Model 
This core engineering step captures static structure of the system context or of the 
subject system or of the components of the system. Static structure involves the 
description of things, objects and their associations. This information is recorded in 
text and graphically as described in “Basics of Structure” on page 35.

Because large complex systems are built from thousands or hundreds of thou-
sands of parts, the Structure Model is developed hierarchically. The hierarchy is 
treated in the next section of this chapter. 

At the system level, important performance characteristics are known for the 
system, i.e. acceleration for a car. The performance requirement of acceleration 
depends upon the properties of components from which it is built, like engine horse-
power, transmission ratios, and total car weight. All of the attributes important to per-
formance must be captured in the object descriptions of the parts, weight for all parts, 
horsepower for engine, etc. Budgeted values for these attributes must be supplied for 
designers to use as design targets.

This step usually produces alternative sets of objects which could be used and 
alternative ways of allocating the desired behavior, from step 4.3, among the objects. 
Alternative designs and architectures emerge form the completion of all three steps: 
2, 3, and 4.

Perform Trade-Off Analysis 
It is in trade-off analysis that the performance requirements and the effectiveness 
measures are evaluated at system level. The objective is not the optimization of indi-
vidual components, but the optimization of the system. The attributes, properties of 
the components are used to calculate the system level performance and effectiveness 
for the alternatives that have been found in the previous steps

Each component has a set of attributes like cost, weight, reliability, power con-
sumption, or heat dissipation. These attributes are the arguments of the equations for 
calculating both performance and Effectiveness Measures. During Trade-Off Analy-
sis values must be obtained for every attribute of every component. This is done with 
the following order of priority because of reliability of the values. It is done first by 
measurement of actual parts, second by simulation, and third by estimation. It is in 
this core step that physical simulation is performed to get at performance using the 
laws of physics, chemistry, logic, and biology. Simulation is performed to get the val-
ues needed for attributes that are part of the performance and effectiveness calcula-
tions. When the attribute values are available, performance is calculated at system 
level. It is important to optimize the system rather than the components. The alterna-
tive architectures or designs that do not meet performance requirements are dis-
carded; they are not feasible. Those that meet performance requirements are feasible 
and one must select among them.
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This selection is done by calculating the Effectiveness Measures and using them 
as the criteria for selecting a near optimal architecture.

When a near optimal architecture is established, it is necessary to examine 
implementation issues. Implementation issues arise in applying the core steps to the 
system context and to the system itself. They occur at all of the tiers of development.

Iterate to Find a Feasible Solution
 Iteration may be performed for several reasons. 

First, a feasible solution may not be found among the architectures that were 
established as alternatives in the earlier steps. 

Second, the engineering work may be partitioned among several teams for a 
large system, and each team may iterate through the partial portions of the system for 
which it has responsibility as an intermediate engineering step to refine their own 
work to a modest number of alternatives. Unless the contributions of the several teams 
are combined and a system level trade-off is done, this approach will lead to sub-opti-
mization of components rather than to system optimization.

Create Implementation, Sequential Build, and Test Plan 
This step controls prototyping, risk, and getting to market. It is created to account for a 
set of Business Realities. 

There are several reasons for considering implementation. In some cases the 
resources available and the time to market dictate the partitioning of the System into 
several pieces that will be sequentially released to the marketplace as a set of products 
ar a series of releases. In some cases the technical work uncovers business opportuni-
ties or a need for partnership with other businesses that must be examined in parallel 
with the technical development and incorporated in the overall planning. 

In many cases certain portions of the development are high risk. The plans for 
these portions need to be advanced in time with alternatives planned to accommodate 
the risks.

For large complex systems it is often an advantage to assemble partial builds of 
the system which can be used for early validation of critical threads through the sys-
tem and for early use of parts of the system in protected and controlled circumstances.

The implementation plan is adjusted to encompass and compromise among all of 
these needs. The Sequential Build and Test Plan provides the ordering of the build and 
the test of Components, which may be built completely or partially. The components 
are assembled to create the system and the responses of the System are measured to 
validate the implementation.
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The Sequential Build and Test Plan is incorporated in the Systems Engineering 
Management Plan. The regular inclusion of this step in the Core Technical Process 
forces a periodic updating of the SEMP at the time that the project develops new 
valid information.

Application at Each Tier. 
It is important to recognize that this optimizing process applies to both the system 
context and to the subject system itself. Some of the most important trade-off deci-
sions for cost, performance and market acceptance involve trades of what things 
belong in the system rather than outside the system and what behavior will be in the 
system rather than in an external system outside it. 

The same core engineering steps are used for analyzing context and for analyz-
ing the subject: system, subsystem, sub-sub-system., as shown in Figure 4-7., 
Sequential Application of Core Technical Process to Context and Subject. The 
sequential analysis of context and of subject are applied at each tier of engineering 
decomposition, for domain analysis, concept analysis, system requirements and syn-
thesis, subsystem analysis, etc.

1.

2.

3.

4.

5. 6.

Initial
Context

Information

Sub-subject
Requirements

Subject
Architecture/Design Model,

PerformanceContext
Architecture/Design Model,

Requirements

Context
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Figure 4-7.   Sequential Application of Core Technical Process to Context and Subject 
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4.3 Hierarchy

Systems engineering is inherently hierarchical. A hierarchy of parts is a fundamental 
abstraction that people use naturally to their simplify thinking about things. This 
abstraction allows us to think about a car as a whole, or to think about its parts, like the 
engine, or to think about subparts like a fuel injector. 

4.3.1 Small Systems vs. Large Systems
The development of small systems can be accomplished with a handful of engineers 
who can intercommunicate frequently and jointly track all of the aspects of the devel-
opment. The outputs, subject architecture/design model, subject performance, subject 
implementation plan, and sub-subject requirements model fully define the context of 
each of the sub-subjects.

In the development of large complex systems the core technical process needs to 
be applied twice in each tier, because of the expansion of parts and of engineering 
teams. The number of parts in a tier increases exponentially as the development moves 
from tier to tier. In large system developments there is a corresponding increase in the 
number of engineering teams applied. These teams receive context, behavior and 
requirement information for their part of the system from other teams which devel-
oped the information at the tier above. It is important that the receiving team use the 
core technical process to thoroughly review the information received. It is important 
for them to correlate their information with that of other teams working on parts that 
interface with their part. 

A small team developing a small system can track all of the information and 
eliminate most of these reviews. 

4.3.2 Tiers of Hierarchy
Hierarchy is applied in a particularly useful way in systems engineering. At each level 
or tier of the hierarchy something different is studied and both Context Analysis and 
Design and System Analysis and Design are performed at each tier for large systems. 
It is necessary to use several tiers of context analysis and design and of system analy-
sis and design because there are several different questions which need to be answered 
for any product. These questions must be answered by analyzing different things at 
different levels or tiers of the parts hierarchy: Concept, System, Sub-system, etc. The 
questions are:
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• Concept Tier: Core Process applied to the business using my product to estab-
lish what my product should be to enhance the business.

• How does the business change when my product is incorporated?
• What value does my product have to the business or user for which it is 

being developed?
•  Are there product segments which are valuable to the customer which had 

not been identified and that my product should address?
•  Which are the most valuable product segments to the customer and what is 

their value?
•  In what sequence do the product segments have to be introduced to the cus-

tomer to get the product installed? Low value segments may have to be 
installed before high value segments can be made to work.

• What is the emergent behavior (effectiveness measures) of my product, sys-
tem, for high value to user,?

• What things and behavior belong inside my product?
• With what does my product interface, its context?

• System Tier: Core Process applied to my product. Use to review context and 
requirements. Use to create product design.

• Review product context received from Concept Tier
• Review the emergent behavior the product must exhibit (requirements) 

received from Concept Tier 
•  The emergent behavior (requirements) is reviewed through the analysis of 

the system context, statically and dynamically using the core technical pro-
cess

• What is the product design? 
• The product design defines the components (subsystems) which comprise 

the product and the behavior (requirements) of each subsystem
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• Sub-System Tier: Core Process applied to my product’s subsystems. Use to 
review context and requirements. Use to create product subsystem designs.

• Review product subsystems context received from System Tier
• Review the emergent behaviors the product subsystems must exhibit 

(requirements) received from System Tier 
• The emergent behavior (requirements) is reviewed through the analysis of 

the sub-system context, statically and dynamically using the core technical 
process

• What is the emergent behavior the product sub-sub-systems must exhibit 
(requirements) 

• What are the product sub-system designs?
• The sub-system design defines the components (sub-sub-systems) which 

comprise the sub-system and the behavior (requirements) of each sub-sub-
system

The hierarchy continues until it is possible to separate out the components that are 
hardware, software, and people - users and operators of the systems. So long as the 
components are composed of combinations of mechanical, electrical, digital, software 
things, and of people, it is not possible to provide requirements to the different engi-
neering disciplines that do the detailed design and implementation.

When the requirements for hardware, software, and people components can be 
described separately, they are transmitted to the respective engineering design and 
implementation teams. Note that the systems engineering team needs to contain engi-
neers who are expert in the relevant hardware, software and people engineering disci-
plines. This description of hierarchy is summarized in tabular form in Table 1.

The table contains an additional tier, the Domain Tier. This is the tier of engi-
neering work that develops a family of products rather than single point products. It 
produces design for reusability. The subject system under engineering analysis is a 
domain or set of businesses or users using our product. The businesses in the domain 
may be very different but able to profit from a common capability. The domain of 
businesses may be a single focused type of business studied at different points of time 
in its future evolution. 
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• Domain Tier: Core Technical Process applied to model each business in the 
domain with my product in the business

• What value does my product have to a collection of businesses or users 
which could benefit from it?

•  Are there product segments which are valuable to multiple businesses or 
users?

•  Which are the most valuable product segments to the multiple businesses or 
users and what is their value?

•  Am I designing my product so that it separates into segments that can be 
sold to multiple businesses? 

•  In what sequence do the product segments have to be introduced to the 
multiple businesses or users to get the product installed? Low value seg-
ments may have to be installed before high value segments can be made to 
work.

• Is my product family adaptable to meet a variety of price and performance 
targets?

The same core process is used at all tiers. What changes is what the process is applied 
to. At each tier there is a subject system to which the core technical process is 
applied. At each tier the subject system interfaces with external systems in its envi-
ronment to establish its context. At each tier the subject system is decomposed into its 
parts, or, if working bottom up, the subject system is synthesized from its parts. At 
each tier there are some major questions to be resolved as summarized in the output 
column of Table 1., Tiers.

Tier
Subject 
System

External 
Systems

Components Output

Domain Tier Collection of 
customer busi-
nesses

Customer sup-
pliers and his 
Customers

Our product 
and product 
segments 
which can be 
reused

Dollar value, 
Requirements 
for Product 
line or Library 
of components

Concept Tier Customer 
business with 
our Product in 
it

Customer sup-
pliers and his 
Customers

Our product 
and Customer 
business seg-
ments

Dollar value to 
Customer 
Business & 
our Product 
context and 
Behavior

Table 1: Tiers
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4.3.3 Hierarchy, Waterfall, Top Down Development
The fact that systems engineering is inherently hierarchical does not imply that the 
work must proceed top down or according to a waterfall model. The work is hierarchi-
cal because it focuses on questions and generates results that can only be obtained by 
analyzing different levels of detail: collection of businesses, a business, a product, 
segments of the product, sub-segments, etc. Depending upon the application the work 
may proceed top down or bottom up, or top down simultaneously with bottom up, 
meet in the middle and finish.

Most development activities do not start with a clean sheet and a totally new 
product. Most developments are extensions of earlier systems or additions to an earlier 
system. In these cases the work is highly constrained to a few new or modified compo-
nents and many of the existing interfaces must be maintained. Such projects are both 
top down and bottom up and may involve re-engineering and reverse engineering if 
the existing system is not fully documented in its present state.

In all of these cases the systems engineers will very likely work at several differ-
ent tiers of decomposition. They will need to apply both context analysis and design 
and system analysis and design at the various tiers unless there is complete existing 
information available to them.

System Tier Our Product Customer 
business seg-
ments

Our Product 
Segments

Product Seg-
ment require-
ments, System 
Performance 
& Cost Targets

Sub-system 
Tier 

One of Our 
Product Seg-
ments

Customer and 
Our other Seg-
ments

Our Product 
Sub-Segments

Sub-segment 
specifications 
& System per-
formance

Continue until Hardware, Software and People components are separated.

HW, SW & 
People 
Requirements 
Tier

One of Our 
HW, SW or 
People compo-
nents

Other HW, 
SW and Peo-
ple compo-
nents

The sub-com-
ponents

HW & SW & 
People compo-
nent Require-
ments & 
System Perfor-
mance

Tier
Subject 
System

External 
Systems

Components Output

Table 1: Tiers
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4.4 Re-Engineering

Re-engineering of large complex systems is often required because hardware compo-
nents have become obsolete or unavailable, or because the software in the system has 
been made unmanageable in a cost effective way. The most complex situations are 
those in which support information for the existing system is totally out of date with 
changes made to the system and yet the system must be kept functioning without 
down time through the new system introduction and change over. A major issue is the 
lack of correct higher level documentation.

Under these conditions, the work shown in Figure 4-5., Model for the System 
Engineering Process on page 106, proceeds as described earlier. It develops new 
specification from the current user needs. This provides information about how the 
system is used and about extensions which must be added to provide new capability. 
In parallel with this work it is necessary to reverse engineer the existing system to 
replace the missing information. The reverse engineering does not need to replace the 
old documentation of structure of the existing system because that structure will be 
replaced in the new design. The reverse engineering needs to extract higher level 
behavior from the available lower level details. 

This is a particularly difficult problem for many older software components. 
Many of them have been constructed with methodologies which distribute the high 
level behavior widely through the software. Reverse engineering is a current topic of 
study and tools to help with the issues are emerging. It can be accomplished manually 
by tracing responses through the system and extracting high level logical units of 
behavior.

When the forward Systems Technical Process results meet the Reverse Engi-
neering results in the middle, then the work can continue systematically with a com-
bination of new components and reverse engineered components.

A major advantage of the systematic approach presented here is that it provides 
for thorough documentation in models. Domain analysis is included in the systematic 
approach to design in documented reusable products and components where the cost 
of the domain work is justified. With thorough documentation with models the 
reverse engineering is avoided and re-engineering is simplified and practical.

4.5 Behavior Model for the Core Technical Process

For completeness, Figure 4-1., Associations of Meta-Process, Methodology, Tools, 
and Infrastructure adds input and output to Figure 4-6., FFBD View for the System 
Engineering Core Technical Process on page 108 to provide a behavior model for the 
core technical process.
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4.6 Union of Best Practice with Modeling

Systems Engineering best practices have been developing for hundreds of years and 
experienced rapid advance and codification in the 1950’s and 60’s for complex sys-
tems. The best practices incorporate strong emphasis on optimization and trade-off for 
the system performance.

Other emerging disciplines, such as software engineering and mechanical engi-
neering have emphasized rigorous modeling and automated transformations of com-
plex design information. Many of the methodologies applied to software engineering 
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lack the engineering steps used for trade-off: definition of effectiveness measures, 
trade-off, and creation of a sequential build and test plan (Oliver 1995). Some do not 
incorporate the capture of concurrency (Selic, Gulekson and Ward 1994).

The model based approach described here merges the best practices of the sys-
tem engineering of complex systems with the use of rigorous modeling and auto-
mated transformation of complex design information prevalent in other disciplines. 

The following six chapters describe each of the modeling steps in the core pro-
cess in more detail. In the course of these discussions it will be necessary to classify 
things like requirements to show how different types are captured in the models and 
associated with other information items.

4.7 Exercises

1. Apply the Core Technical process to the metal knife assembly of the six-blade 
pocket knife example. Use the examples of Chapters Two and Three as available 
information. Reuse directly as much of the available information as possible.

a. Assess the initial information available. Identify missing information. Classify 
the kinds of information.

b. Create a static and dynamic context for the metal knife assembly.

c. Create effectiveness measures for the knife which would help it dominate its 
market.

d. Create a structure model for the metal knife assembly. Will this will include an 
interconnection model of the parts.

e. Create a behavior model for the metal knife assembly.

f. Allocate functions between the behavior and interconnection models.

g. Include all important attributes in the object descriptions of each part and bud-
get attribute values to the attributes.

h. Identify the work you would do to extend this description to an entire product 
line of knives. Identify the domain involved in that work.

2. What effects on the design would result from making the three parallel core steps 
occur serially? 
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Assess Available Information
5.1 What Core Step 1 Is

This chapter describes how to receive and assess the information that is made avail-
able to a systems engineering team. If the team is trained in modeling, the informa-
tion available from users, operators, heritage systems, clients, and marketing can be 
captured in models as described in the succeeding chapters. Both the process and the 
system descriptions that result are rigorous. In assessing the available information, 
systems engineering teams must:

• Collect the existing information

• Combine all collateral information, including change documents which may 
be received during the collection period.

• Classify problems, define issues, and trace requirements to origin

• Resolve issues

• Generate and review requirements database and operations concept.

• Correct any problems in the engineering database.

Along the way systems engineers must overcome a number of problems. Not the least 
of these is the manner in which the information arrives. The most common form for 
systems engineers to receive their information is in large complex text documents. 
Frequently the requirements will be mixed with other forms of information which 
must be separated. The separated requirements may be redundant, contradictory, 
incorrect, incomplete, unverifiable, and poorly written. The other primary source of 
information is heritage systems which typically were not designed with any rigorous 
methodology and have little readily usable information available without reverse 
engineering the existing product. 

This chapter describes a classification, a taxonomy, for natural language text 
requirements to provide a consistent basis for discussing them. It describes relation-
ships among them. It goes on to provide a detailed process for carrying out a com-
plete assessment and classification of the text material. This is difficult work when 
the text is thousands of pages.
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The systems engineering best practice defined in this book describes how the 
text can be augmented with executable models which will be rigorous and supported 
by computer tools when that modeling work is funded and encouraged by manage-
ment. Management acceptance of time spent in the up-front modeling process is 
essential to overall success of the methodology. While great lip service is often given 
to these phases, the temptation is great to do a makeshift job in order to get to “the 
important stuff.”

If the information is provided in the form of rigorous executable models, there 
will be a context model, both static and dynamic, for the system or components under 
consideration. These models will include the interconnections and interfaces associ-
ated with assembly of the components to make a whole, the excitations of the system 
or components, the conditions under which this occurs, and the responses to those 
excitations. These models are reviewed by applying the technical core process to 
them. This enables engineers to use their experience and creativity to find the 
unknown missing things, “unknown-unknowns”. If the executable models have been 
captured in automated tools, the tools can be used to check for consistency and cor-
rectness of the models. This procedure will find errors in complex details that are hard 
for engineers to spot otherwise. The expense of correcting an “unknown-unknown” 
error is small in the earliest stages of development, and very large in late stages. Both 
automate checking of models, and review by experienced and creative engineers are 
essential to find errors early. This chapter is about the review and early correction of 
the available information.

5.2 A Requirements Taxonomy

We first develop a taxonomy which is used to categorize the requirements as they are 
encountered and developed.

At any point of time in a project the engineers deal with two kinds of informa-
tion: the Initial Information at the beginning of the project and the Developed Infor-
mation created during the project. Initial Information received at the beginning of a 
project is often largely in the form of text. It consists of Text Requirements, Heritage 
Information, User Information, Text Operations Concepts, and Models. These associa-
tions are shown in Figure 5-1., Associations of Available Information. 
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The Text Requirements trace to the models. Exactly how they trace into the several 
kinds of modeling elements depends upon what kind of requirements they are. Types 
of requirements will have to be developed. The Text Operations Concept narrates the 
excitation response interactions among the subject System and the External Systems 
with which it interacts. The Text Requirements are classified in three important, 
ways:

1. By their origin,

2. By the work to be done to fix them, and

3. By their use.

When engineers identify and classify requirements, they can create the needed trace-
ability links for the requirements and correct the identified problems discovered 
among them. Figure 5-2., Classification of Text Requirements is an information 
model showing this classification for text requirement. Note that these three classifi-
cations are independent. 

A single requirement may be, for example, Original, Functional, and Verifiable 
by Test. Each requirement is classified by origin, work done, and its use. These cate-
gories are used throughout the design process in tracking the needs and validity of 
any of the requirements and in creating traceability links. 
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Initial
Information
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Information

Initial Text
Operations
Concept

Initial Text
Requirement
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Information

Initial

trace to

narrate
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Figure 5-1.  Associations of Available Information
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5.2.1 Classification by Origin
Every requirement must start somewhere. This classification tracks where that 
somewhere is. 

The majority of Initial Text Requirements are classified as Original 
Requirements. These are, quite simply, those requirements which were expressed 
directly in the text documents given to the systems engineering team and often 
appearing in contracts. Original Requirements are frequently expressed in sen-
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trace to
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tences such as, “The system shall obtain a speed of at least 100 kph.” Some of these 
requirements do not define the system, but rather point to reference requirements, 
another category.

The other category of Original Requirements is that of Reference Requirements. 
These are entire sets of other requirements such as any of the ISO standards. An orig-
inal requirement might state that the rollover protection system, ROPS, must meet 
NEMA 123-456, which is a standard for ROPS established and maintained by 
NEMA.

The Original Requirements are closely related to another category: Derived 
Requirements. As the original requirements are studied and as modeling proceeds, 
additional requirements are found. These are the Derived Requirements and they trace 
to the Original Requirements from which they were derived. Derived Requirements 
may be derived from other Derived Requirements. They are part of the Developed 
Information.

Another category of requirements is Implied Requirements. These have no pre-
cursor in any documentation. They represent omissions in the imperfect initial infor-
mation. When they are identified and created by engineers, they become part of the 
Developed Information. They occur less frequently than other types of requirements.

5.2.2 Classification by the Work Needed to be Done
When requirements are initially identified and examined, they often have one or more 
defects which must be corrected. The defects are identified and corrected by the engi-
neers before proceeding to other steps in the core process. 

The first determination that needs to be made is whether the requirement is ver-
ifiable or not. For a requirement to be verifiable there must exist some measure that 
can be used to determine if the system as designed or produced satisfies the require-
ment. There are both quantitative and qualitative measures which can be used. 

Those requirements which are verifiable requirements are further broken down 
by the approach that will be used to verify them. The four sub-classes are:

• Test,

• Analysis, 

• Survey, and

• Inspection

Test and analysis lead directly to quantitative results. Survey is used in the 
extremely important situation of establishing user preferences. This may be done 
through surveys with questions. It is done more effectively by obtaining responses 
from users who try out product prototypes. General Electric maintains a large facility 
at its Louisville appliance park where appliance users come and utilize new versions. 
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Their reactions are analyzed statistically. Inspection is used for validation when an 
examination of the product will show that a requirement has been met. For example, a 
requirement for the color of something can be verified by inspection.

Regardless of which means is to be used, once a requirement is determined to be 
verifiable, the verification procedure must be designed and entered into the acceptance 
test suite. System level models which capture executable excitation and response of 
the system provide a direct link between the specification development and the accep-
tance test suite.

If a requirement is found to be Not Verifiable then there is work to be done. It is 
likely that system analysis with the core technical process will be necessary to formal-
ize what was meant by the requirement and to recast it in a verifiable form. An exam-
ple of this situation is provided in the last part of this book which is a coherent 
example of the modeling process.

Compound requirements state two conditions which must be met within one 
statement such as in “The wheels shall be round and made of rubber.” Here two 
requirements exist. In this case it should be split into two separate, traceable require-
ments. These two new derived requirements will, of course have to trace back to the 
original compound requirement in order to be able to demonstrate to the customer that 
all the expressed requirements were met.

Redundant requirements are a hard category to find. It is fortunate that they are 
relatively benign. They increase the tracking load and, if they are numerous enough, 
can make the system appear more complex than it really is. When redundant require-
ments are detected, they can be merged after careful consideration that they truly are 
redundant.

Inconsistent requirements are quite commonly found in system specifications for 
large projects. The specs are built by teams each responsible for some end functional-
ity, and these functionalities may have conflicting objectives which need to be sorted 
out during system design. It is important to detect conflicting requirements as soon as 
possible to avoid making incompatible design decisions for parts of the system. Every 
bit of delay increases the cost of correcting the requirement.

Often the original specification documents will include TBD and TBR in places 
where the requirements are known to be incomplete. TBD and TBR flag To-Be-
Defined and To-Be-Resolved issues. These requirements must be scheduled for reso-
lution and tracked closely because there eventual definition can have profound impact 
on the system design.

Poorly Written is the last sub-class in the work to be done classification. Ambig-
uous and other hard to understand requirements fall into this grouping. They must be 
rewritten.
128



Assess Available Information
5.2.3 Classification by Their Use
Text Requirements are classified by use so that they can be traced or budgeted prop-
erly to appropriate modeling entities, i.e. functions or components. This classification 
helps the project to monitor completeness and correctness of the modeling by provid-
ing answers to questions like: have all performance budgets been made to compo-
nents? The kinds of requirements by use are:

• Functional Requirements which state what the system must do. They trace to 
the functions which will accomplish them. In the models these functions are 
encapsulated in objects and appear in the executable behaviors. They do not 
state how the system will be built, only on what it shall do.

• Temporal Performance requirements which give values for the amount of time 
there is for the system to respond to stimulus. These time values are budgeted 
to the functions that carry out the response.

• Non-temporal Performance requirements which give values for properties of 
the system like cost, weight, size, power consumption, availability, security, 
etc. These quantities are budgeted to the components which make up the sys-
tem. The components are objects and must have attributes that match these 
quantities. It is the components and sometimes the structure of the assembly of 
components that have properties like cost, weight, moment of inertia, mean 
time between failure, etc.

• Interface requirements which specify input/output, limits of flow, and timing 
at the interfaces between components. The behavior of the components at the 
interface must be adjusted to meet the Interface Requirement. These require-
ments are increasingly important because equipment from many manufactur-
ers and sited all over the world must interact and intercommunicate. Industry 
standards in interfaces are critical. At the time of writing this book, the lack of 
accepted interface standards for wide-band coax modems is, along with cost 
and software issues, a limiting factor in introducing two way communication 
in the cable systems wired to 60% of US homes, (Perry 1996). In large com-
plex systems thousands to tens of thousands of interfaces exist and must be 
consistent for the system to work.

• In the real world, the specification documents which one receives frequently 
contain Design Requirements which predetermine a design choice. For each of 
these it is important to raise an Issue (which traces to the Design Requirement) 
with the customer of whether this requirement is meant to apply, or whether it 
is a misstatement of a requirement in the form of design. The Issue traces to a 
Resolution. The Design Requirement becomes either an Adjudicated Con-
straint which will be followed, one of the other kinds of requirements, or it is 
eliminated.
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The classification information in Figure 5-1., Associations of Available Informa-
tion and Figure 5-2., Classification of Text Requirements, can be combined. The infor-
mation above describing Design Requirements tracing to Issues tracing to Resolution, 
and then to Adjudicated Constraints or other kinds of requirements can be added in. 
Since the engineering work also develops models based on any Initial Models 
received, a Developed Model object can also be added. This results in the complex 
information model of Figure 5-3., Information Model for Requirements.
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An association which emerges from this modeling is that the Developed Infor-
mation consists of Derived Requirements, Implied Requirements, Adjudicated 
Constraints, and Developed Models. All of the types of requirements and the 
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Adjudicated Constraints trace to elements in the Developed Model which extends the 
Initial Model received with text. 

Figure 5-3., Information Model for Requirements is complex and is more readily 
understood from partitions like Figure 5-1., Associations of Available Information and 
Figure 5-2., Classification of Text Requirements. However, it summarizes five pages 
of written text and is more rigorous than the text. 

In a form such as Figure 5-3., Information Model for Requirements, a team of 
engineers can walk through the associations one by one to verify that they make sense. 
In this form the information is unambiguous, executable and can be used as the basis 
for generating a database schema that will represent all of these information associa-
tions. When complex information models like Figure 5-3., Information Model for 
Requirements, are created, they can fail to properly capture reality and can need modi-
fication. They are however, unambiguous and can be checked by engineers and with 
tools to find and remove such failures. Information models can be used to create a 
database schema for information storage.

5.3 A Behavior for Assess Available Information

As we have seen, when a team developing a large complex system receives thousands 
of pages of Available Information in the form of text requirements, there is a large 
amount of work to be done to assess the information.

• Identify and correct the problems in the requirements

• Classify the kinds of requirements so that they can be properly budgeted and 
traced and engineering progress tracked

• Create needed traceability links

Fortunately tools exist, some with hypertext automation, to speed this process. A data-
base with information about tools is developed and maintained on the World Wide 
Web by the International Council on Systems Engineering, (INCOSE 1996). 

The process for assessing available information can be described as a behavior 
with a model.

5.3.1 Decomposition of the Behavior of Core Step 1
Figure 5-4., Functional Flow Block Diagram Decomposition of Core Step 1 provides a 
Functional Flow Block Diagram view which decomposes the behavior of Core Step 
1., Assess Initial Information. An FFBD is used here, without showing input/output, to 
simplify a complex diagram.
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 The FFBD of Figure 5-4., Functional Flow Block Diagram Decomposition of 
Core Step 1, contains two major parallel parts. The upper part, functions 1.1 - 1.13, 
describes what is done in correcting, classifying, and tracing text requirements. There 
are six major sequential groupings of tasks in this upper path. 

1. Collect the existing information

2. Combine all collateral information, including change documents which may be 
received during the collection period.

3. Classify problems, define issues, and trace to origin

4. Resolve issues

5. Generate and review requirements database and operations concept.

6. Correct any problems in the requirements database.

 The first job to be done is to gather information. If this is the start of a program, then 
one gathers the heritage, user, text requirements, and operations concept information. 
If this is part way through the program, one gathers the prior context and component 
models.

The next job is to incorporate the user and heritage information with the text 
requirements and to identify any reference requirements. The requirements from the 
reference sources must be obtained and merged with the other requirements informa-
tion.

If requirement changes are received, they are identified and traced to source doc-
uments to establish what is affected by the changes.

With the raw requirements in hand, the next job is to identify what are require-
ments and to separate explanatory statements and boiler plate from the requirements. 
As identified requirements emerge, they are classified by source and by work to be 
done; and issues are developed. It is convenient at this time to ensure that all require-
ments trace to their source. In the later stages of the development the context and 
object models are reviewed and issues raised regarding the models.

 The next job is to plan issue resolution, track that work, resolve the issues, clas-
sify requirements by use (now that issues are resolved), and define the means of vali-
dation.

As this work is done, a database of paper or an electronic database of informa-
tion is developed. The job now is to generate a complete and consistent database and 
to review it. This is then followed by correcting any requirements format problems 
that were found in review and correcting the database information.

If one is dealing with models at this part of the program life cycle, then there will 
be available both context information and operations concept information in the form 
of initial models. The lower part of the FFBD of Figure 5-4., Functional Flow Block 
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Diagram Decomposition of Core Step 1 describes the steps in assessing the initial 
models. First the models are collected. Next they are analyzed with the core technical 
process.

If these are executable models they can fully define the system context. They 
will represent the excitations of the system and the system responses. These scenarios 
provide the stimuli that drive the components responses. It is important that they are 
complete and that they are correlated with the validation suite which is developed. 
Capturing them as behaviors in executable models is a potent way to specify what the 
system or component must do. The scenarios must be reviewed and the database for 
modeling scenarios corrected.

The sets of scenarios developed in this first Core Step are vital as inputs to the 
succeeding core engineering steps which model what the system does internally. 

When the available information has been assessed then core step 1 is complete 
for this iteration. The next step in the Core Process are ready to be undertaken. The 
next three steps are interdependent and they are carried out concurrently. 

5.4 Summary

In the development of large complex systems there is substantial effort and engineer-
ing cost expended in assessing the large requirements documents that are made avail-
able. These efforts and costs can be reduced substantially with modeling. When a 
modeling approach is applied, the information is substantially condensed. A page of 
modeling is equivalent to five to ten pages of text. Further, the models can be checked 
for correctness by engineers and tools, and they can be transformed rigorously into 
the notations and views needed by particular engineering disciplines. When models 
are used fully, text descriptions are not lost. Instead they are created as data dictionary 
items whenever a modeling element is created. This provides for traceability without 
having to create traceability for large volumes of text. The links exist within the mod-
els.

In practice it is not a matter of choice of the engineering organization whether to 
use text documents only, models only, or text documents with some models. In most 
real situations the manner in which requirements are handled is established by the 
acquisition process defined by the acquiring organization or by management. The 
engineering professionals need to respond efficiently and proactively to any of the sit-
uations.

5.5 Exercises

1. The available information is taken from a problem statement that was written for 
software engineering development and is intermediate between a requirements 
statement and an operations concept. The available information is for an Auto-
mated Teller Machine System:
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“Design the software [an automated teller machine system] to support a comput-
erized banking network including both human cashiers and automated teller machines 
(ATM’s) to be shared by a consortium of banks. Each bank provides its own computer 
to maintain its own accounts and processes transactions against them. Cashier stations 
are owned by the individual banks and communicate directly with their own bank’s 
computers. Human cashiers enter account and transaction data. Automatic teller 
machines communicate with a central computer which clears transactions with the 
appropriate banks. An automatic teller machine accepts a cash card, interacts with the 
user, communicates with the central system to carry out the transaction, dispenses 
cash, and prints receipts. The system requires appropriate record keeping and security 
systems. The system must handle concurrent access to the same account correctly. The 
banks will provide their own software for their own computers; you are to design [the 
ATM system] the software for the ATM’s and the network. The cost of the shared sys-
tem will be apportioned to the banks according to the number of bank customers with 
a cash card.”

a. Break the paragraph into individual sentences and classify them by the work to 
be done.

b. Correct the identified problems for each sentence.

c. Identify any derived requirements or implied requirements that result from b. 

d. Attach to each statement that results from c. how it shall be validated.

e. Classify each statement according to its use. 

f. Adjudicate any design requirements as reasonable or needing transformation to 
one of the other types. Correct any which need transformation.

2. Give three examples of:

a. Original Requirements

b. Reference Requirements

c. Implied Requirements

d. Derived Requirements

3. Provide a text description of the relationship of Design Requirements to Implied 
Requirements (see Figure 5-3., Information Model for Requirements on page 131).

4. Develop a narrative requirements statement for a design of a folding table.

5. Apply the process of Figure 5-4., Functional Flow Block Diagram Decomposition 
of Core Step 1 on page 133 to the answer for question 2.
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Define Effectiveness Measures
6.1 What Core Step 2 Is

Core step 2 establishes the criteria, the effectiveness measures, by which alternative 
designs and architectures will be judged. It provides the guidance of what is most 
important to the developers of structure and behavior models. For criteria that are 
matters of preference, it establishes the stakeholder groups and surveys that identify 
and establish a set of effectiveness measures. For criteria that can be expressed as 
statements of engineering performance, it generates the equations that define them in 
engineering terms. It sets up the surveys that are required to prioritize all of the effec-
tiveness measures.

The numerical evaluation of the effectiveness measures is not done in this step, 
it is a part of the later Core Step 5, Trade-off which is discussed in “Perform Trade-
Off Analysis” beginning on page 203.

Effectiveness measures are a basic abstraction used by management to analyze 
business and formulate business strategy. The are examined in “Interface with Acqui-
sition and Management” beginning on page 307.

6.2 Importance of Effectiveness Measures

Effectiveness Measures are the small subset of the requirements that are so important 
that the system will fail if they are not met and will be a hugh success if they are met. 
They are the important things the product will do. They incorporate the visionary 
goals of management and engineering which may exceed what users and operators 
expect and presently can appreciate. They are the criteria used to make the trade-off 
decisions of what to build. They drive the system solution. The design of a system is 
an ill posed problem that has no solution without a set of criteria to guide choices. 
The effectiveness measures correspond to the regularization functions used in optimal 
control or in calculus of variations. They are few in number, usually less than a 
dozen, even for large complex systems.
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The effectiveness measures are critically important because they incorporate 
what customers, owners, operators, and users want and will use in their decisions to 
buy or not buy product. They define the fit of the product to the marketplace. They are 
critical because all the stakeholders - users, customers, owners, operators, engineers, 
and management, must agree on them or there will be future problems.

If these criteria are not both correct and agreed to, then the system development 
can be plagued with costly requirements changes. It may miss its market. The effec-
tiveness measure results are extremely useful in reviews with management and with 
customers, users and operators who do not want to know all of the technical engineer-
ing detail but do want to know about these critical system criteria.

 Figure 6-1., Context for Systems Engineering, shows an object structure model 
that captures the context for systems engineering, considered as an organization. Only 
the design engineering disciplines, suppliers, and manufacturing engineering disci-
plines need and want to receive the engineering detail. The detail they need to receive 
is a version of the system detail transformed into the views and notations of the disci-
pline. The product stakeholders and management need information about the system, 
especially effectiveness measures, in a form that is useful to them. The product stake-
holders do not need all of the technical data.

 Systems
Engineering

Marketing

Sales

Management Manufacturing

Product Stakeholders -

 Design Engineering Disciplines -
Hardware, Software, Operator,...

Suppliers

 
Purchasing

users, operators, buyers,
owners, customers

Engineering

Figure 6-1.  Context for Systems Engineering
140



Define Effectiveness Measures
The use of effectiveness measures as decision criteria for trade-off gives the 
core technical process for engineering complex systems its distinctive behavior. 

Trade-off in software engineering is known as optimization and complexity. The 
heart of trade-off in software engineering is complexity or space for speed. An O(n) 
algorithm executing n operations may run in O(n*2) time, while a less complex algo-
rithm to perform exactly the same function may run in O(nlogn) time. Similarly, soft-
ware can be adjusted to store more intermediate calculations and run faster, or to use 
less storage space and run slower. Speed can be traded against the size of the data 
storage. These optimizations can and often are performed after code is initially run-
ning. This is the integration phase of software development. 

Systems engineering employs effectiveness measures and trade-off in a distinct 
and formalized manner which is different than the practice in software engineering. 
This difference must be taken into consideration when attempting to apply software 
engineering methodologies to systems problems.

6.3 An Industrial Example

When effectiveness measures are first posed they are often phrased in customer and 
user terms rather than in engineering equations and quantities. They must become 
measurable and transformed into engineering quantities, or they must be posed with 
alternatives. 

An interesting illustration is the development of the Boeing 777, (Norris 1995). 
At the conclusion of the negotiations with United Airlines which placed the launch 
order for the 777, a hand written note stated:

“In order to launch on-time a truly great airplane, we have the 
responsibility to work together to design, produce, and introduce an 
airplane that exceeds the expectations of flight crews, cabin crews, 
and maintenance and support teams and ultimately our passengers 
and shippers. From day one:

•Best dispatch reliability in history

•Greatest customer appeal in the industry

•User friendly and everything works.”

The Boeing engineering team included engineers from the airlines from day one. The 
bulleted measures above had to be transformed into two kinds of measurable goals:

• measurable engineering goals

• preference goals from surveys of customer 
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Reliability is a clear engineering goal and can be quantified. Engineering goals 
derived from “greatest customer appeal in industry” would likely include flight range, 
passenger comfort, and aircraft availability. They can be quantified by interacting with 
the customers and attaining agreement on the numerical values critical to success. 

“User friendly to flight crews, cabin crew, passengers, etc.” can also be quanti-
fied, but only by careful survey of the wants and preferences of these groups of peo-
ple. This can be done with real attainable feature alternatives, access to representative 
groups, and valid statistical analysis of the results. The findings can then be translated 
into engineering alternatives and goals.

 As the engineering solution emerges, the results can be explained in terms of 
what will be achieved in dispatch reliability, customer appeal, user friendliness, and 
reliability of all parts of the aircraft. This is the information needed and understood by 
most of the stakeholders.

6.4 How Effectiveness Measures Drive the Solution

How the effectiveness measures drive the solution is shown with a simple example. 
The three functions of Figure 6-2., Behavior of Three Independently Concurrent Func-
tions provide the basis for the example.

Functions A, B, and C are completely independent and have separate and distinct 
inputs and outputs. They can be rearranged in any of the possible series parallel com-
binations without affecting the outcome - O1, O2, and O3. If they are done in a 
sequence, or two in a sequence with one parallel, the same outputs are produced. A 
simple practical example of three such functions is: setting a dinner table, cooking the 
dinner, talking with a guest.

1.
Function A.

2.
Function B.

3.
Function C.

And And

O1I1

O2I2

O3I3

Figure 6-2.  Behavior of Three Independently Concurrent Functions
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For this trivial example we assume that there are estimates of how long it takes 
to perform each of these tasks, as shown in Figure 6-3., Timeline. Task A takes 1 time 
unit, task 2 takes 2 units and task 3 takes 4 units.

We assume that we have only one kind of resource, Object R, with a fixed cost 
per unit that can do all three of these functions. We can use several of them in the 
solution.

6.4.1 Problem: System 1
• The effectiveness measure is least cost for System 1.

• What is the near optimal solution?

• Answer: One object with the three functions serialized shown in Figure 6-4., 
System 1 built from Object R

time

Task A

Task B

Task C

1         2          3          4

Figure 6-3.  Timeline
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There are six equivalent behaviors to do this as shown in Figure 6-5., Six near 
Optimal Behaviors.

Low Cost, System 1 

Cost $100
Time 7 units

Function A
Function B
Function C

Cost $100
Time 7 units

Function A
Function B
Function C

Object R

1

Figure 6-4.   System 1 built from Object R

1.
Function A.

2.
Function B.

3.
Function C.

1.
Function A.

3.
Function C.

2.
Function B.

2.
Function B.

1.
Function A.

3.
Function C.

2.
Function B.

3.
Function C.

1.
Function A.

3.
Function C.

1.
Function A.

2.
Function B.

3.
Function C.

2.
Function B.

1.
Function A.

Figure 6-5.   Six near Optimal Behaviors
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6.4.2 Problem: System 2
• The effectiveness measure is least time to complete for System 2.

• What is the near optimal solution?

• Answer: There are two solutions:

•  System 2.1 Three objects, each performing one function 
•  System 2.2 Two objects, one performing functions A and B, one perform-

ing function C. 
System 2.1 is shown in Figure 6-6., System 2.1 built from Three Object R’s 

The behavior of System 2.1 is the concurrent behavior shown in Figure 6-2., 
Behavior of Three Independently Concurrent Functions on page 142, which can use 3 
resources or objects to perform it. Three instances of object R are used in three differ-
ent roles. Note also that the behavior does not demand any interfaces among the three 
objects used. Interfaces might be necessary for other reasons, but not because of the 
behavior. The non-temporal attribute of cost adds going up the aggregation tree. Time 
does not add. The time line is the result of the behavior and is obtained by executing 
the corporate behavior of System 2.1.

The alternative solution, System 2.2, is a solution to this problem and to a more 
restricted one below.

Short Time, System 2.1 

Cost $300
Time 4 units

Function A
Function B
Function C

 

Cost $100
Time 2 units

Function B

Object R, role B 

Cost $100
Time 1 unit

Function A

Object R, role A  

Cost $100
Time 4 units

Function C

Object R, role C

Figure 6-6.   System 2.1 built from Three Object R’s
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6.4.3 Problem: System 3
• The effectiveness measures are

•  least time to complete for System 3.
•  lowest cost for System 3.

• What is the near optimal solution?

• Answer: There are two solutions:

•  System 3.: Two objects R, one performing functions A and B serialized, the 
other performing function C. Because there are two ways to serialize Func-
tions A and B, there are two solutions.

Figure Figure 6-7., System 3 Built from Two Object R’s. shows Object R used in 
two roles

 

The overall completion time for System 3. is the same as for System 2., as shown 
by executing the behavior of Figure 6-8., Behavior of System 3. It is less than System 
1. The optimal structure found for System 3 is identical to the solution found for Sys-
tem 2.2.

Short Time, System 3 

Cost $200
Time 4 units

Function A
Function B
Function C

Cost $100
Time 3 units

Function A

Object R, role AB

Cost $100
Time 4 units

Function C

Object R, role C

Function B

Figure 6-7.  System 3 Built from Two Object R’s
146



Define Effectiveness Measures
The cost of System 3. is two-thirds of System 2.1 and twice as great as System 
1. The results of the example are summarized in Table 2., System Alternatives & 
Effectiveness.

The effectiveness measures drive the solution that is adopted. They guide and 
reduce the work of modeling behavior and structure by informing the engineers 
which alternatives to explore. The alternatives exist because behavior can be mapped 
to the parts in different ways taking advantage of independent concurrency in the 
behavior of the system. Numerical evaluation of the effectiveness measures requires 
knowledge of both the behavior and structure of alternative system designs. It 
requires knowledge of the attributes of the parts of the structure. It requires access to 
stakeholder groups who can express their preferences among alternatives.

In even this trivial problem, effectiveness, behavior, and structure were all con-
sidered. The development of these three models is a set of concurrent dependent 
activities.

System 
Alternatives

Time Cost
Effectiveness 

Measures

System 1 7 units $100 cost

System 2.1 4 units $300 time only

System 3 4 units $200 time & cost 

Table 2: System Alternatives & Effectiveness

1.
Function A.

2.
Function B.

3.
Function C.

And And

O1I1

O3I3

O2I2

Figure 6-8.  Behavior of System 3
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The effectiveness measures not only drive the solution to the problem, but also 
guide the management of the team performing the work. They become a guiding prin-
ciple for prioritizing the focus of the work, for allocating manpower to the tasks, and 
for assessing risk (Reugg, Field, and Boldblatt 1993).

6.5 Types of Effectiveness Measures

It is useful to classify effectiveness measures based on the kind of work that must be 
done to evaluate them.

 Figure 6-9., Classification of Effectiveness Measures depicts three kinds of 
effectiveness measures:

• Those that can be calculated with equations from the attributes of the parts of 
the system and the structure of the system - attributes like weight, cost, power, 
or reliability

• Those that can be calculated from modeling and analysis - modeling of behav-
ior, simulation of probability of detection, etc.

• Those that can be obtained from survey of the preferences of owners, operators, 
and users using their choices among solution alternatives.

6.6 Priorities among Effectiveness Measures

Complex systems are similar to the trivial example above in being driven by only a 
few effectiveness measures. However, complex systems involve thousands or more 
parts. The relationships between the effectiveness measures and the attributes of indi-
vidual parts span several tiers of decomposition of the system and many linear and 
non-linear relationships. Both the budgeting of attribute values to parts and the roll-up 
of attribute values to effectiveness measures needs the precision and efficiency of 
computer capture and execution with models.

Effectiveness
Measures

Preference
Effectiveness

Measures

Attribute
Effectiveness

Measures

Modeling
Effectiveness

Measures

kinds of

Figure 6-9.   Classification of Effectiveness Measures
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A list of individual effectiveness measures as criteria does not completely estab-
lish the solution to choose. Compare Systems 1. and 2.1 in Table 2. Is the gain of 
reduced time from 7 units to 4 units worth the added weight of two Object R’s and 
added cost of $50.00? This can be decided in several ways:

• By examining a table such as Table 2 and choosing. 

• When the trades are continuous functions rather than a coarse set of choices, it 
can be done by finding minima in the functions and then choosing among 
them.

• By prioritizing the effectiveness measures into a single cost function by 
assigning priorities or weights for each measure. The solution with the lowest 
value of cost function is then the system of choice. 

Statistically valid systematic methods of assigning such priorities have been devel-
oped. The advantage of the single cost function is that it provides a single number on 
which to base the selection of the design to be used. The advantage of examining the 
set of individual effectiveness measures and how they vary with alternatives is that 
one can see where the sharp maxima and minima occur and where the broader max-
ima and minima occur. It is sometimes prudent to select a somewhat less optimal 
design if the tolerances on the attributes of the parts can be larger. This selection is a 
selection based on quality/risk and should be quantified with a proper requirement or 
effectiveness measure.

 The selection of the effectiveness measures from among all the possible perfor-
mance requirements, and the selection of the weighting factors both require setting 
priorities by assessing the opinions of informed individuals. The individuals partici-
pating need to represent all important product stakeholder groups. The nature of the 
statistical methods used (Thomas 1983) make it equally easy for individuals of 
diverse backgrounds and education to participate.

Two methods recommended for setting priorities for complex systems are the 
Analytic Hierarchy Process, AHP, (Saaty 1983), and the Multi-attribute Utility The-
ory, MAU, (Roy and Vincke 1981).

In the AHP process individuals consider the relative importance of the effec-
tiveness measures in pairs, two at a time, until they have exhausted all the pairs. A 
scale for assigning importance is provided by the method. These results are summa-
rized in a matrix and the principal eigenvector of the matrix provides the values for 
the priorities. If all of the effectiveness measures can be computed analytically, then 
these priorities are used directly as weighting factors for the regularization function 
that will establish the near optimal design.
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Some of the effectiveness measures may be of the type that are matters of user 
preference. In this case the designs are considered in pairs for each of the effectiveness 
measures by the individuals participating. These results are combined with the weight-
ing factors to yield a preference for each design. The method provides a check for con-
sistency and significance of the results.

The AHP and MAU methods provide a rational basis for the selection of a par-
ticular design candidate.

6.7 Information Model for Core Step 2.

The nature and use of effectiveness measures has been discussed above and illustrated 
with a simple example. It is useful to provide more rigorous models of the work done 
in creating effectiveness measures and of the information used. Figure 6-10., Informa-
tion Model for Create Effectiveness Measures captures associations among the infor-
mation objects. The reasons for the associations in this model are that they are used in 
the work that is done. A discussion of the information model proceeds from a descrip-
tion of the work steps to be done. The work steps are shown in Figure 6-11., FFBD 
View of Define Effectiveness Measures, Core Step 2. These figures are discussed 
together because of their intimate association.
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Figure 6-10.   Information Model for Create Effectiveness Measures
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All of the Effectiveness Measure identification is done in conjunction with the 
major stakeholders: owners, operators, users, management, marketing, customers, etc. 
The first set of four steps, Figure 6-11., FFBD View of Define Effectiveness Measures, 
Core Step 2, accept all currently available information and identify the stakeholders 
who will participate with the engineering team. Sometimes marketing represents 
groups of these people. There follows three concurrent paths.

In the top path the team defines the effectiveness measures that are related to the 
attributes of the parts and to structure, like cost, weight, and reliability. Equations are 
associated with the attributes and have these attributes as their arguments. The associ-
ations are shown on the right side of Figure 6-11., FFBD View of Define Effectiveness 
Measures, Core Step 2. The attributes must be captured in the Structure Model, Core 
Step 4.

In the middle path the team defines and performs the surveys that generate effec-
tiveness measures related to preferences. An example would be a survey to establish 
the seat environment for passengers that would make an aircraft the most appealing in 
airline use. The associations are shown in the top center of Figure 6-11., FFBD View 
of Define Effectiveness Measures, Core Step 2.

2.4
Identify

Stakeholder
Participants

2.5
Define

Effectiveness
Measures

2.7
Perform

Effectiveness
Measure

2.9
Define

Effectiveness
Measures

2.8
Generate

Effectiveness
Measures

2.6
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Equations
Measure

Effectiveness
from

Attributes
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Modeling

Survey from
Preferences

2.10
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Behavior
System
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2.11
Perform
Priority
Survey

2
Define

Effectiveness
Measures

2.1
Accept
Initial
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2.2
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Behavior
Model

2.3
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Structure
Model

And

Figure 6-11.  FFBD View of Define Effectiveness Measures, Core Step 

And And
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Figure 6-11., FFBD View of Define Effectiveness Measures, Core Step 2 the 
team defines effectiveness measures based on modeling associated with execution of 
behavior. This implies that there is work in progress to define Behavior, Core Step 3. 
This path is particularly important when the overall success of the behavior is not 
known but behavior is understood and probabilities are known or estimated for the 
steps in the behavior. Examples are probability of success in detecting a flaw, in 
detecting a military threat, in destroying a target, in completing a communication, etc. 
These problems often involve communication bandwidths and frequency and size of 
communications. They yield to simulation and monte carlo calculations for which 
behavior must be known. The left side of the figure shows the associations of an exe-
cution engine (a computer tool or person) with the Subject system and the effective-
ness measures.

The last step in Figure 6-11., FFBD View of Define Effectiveness Measures, 
Core Step 2 is to perform the priority survey that establishes priorities for a cost func-
tions. The center part of the figure shows that the effectiveness measures determine 
the alternative subject system designs to be considered. It shows that the effectiveness 
measures have priorities which are generated by the priority survey. The priorities 
establish the cost function that selects among the alternative designs.

The effectiveness measures have a determinative influence on the behavior and 
structure developments that establish alternative architectures. They provide the 
insight to the engineers to efficiently develop a modest number of likely alternatives 
from among the multitude of possible alternatives. 

6.8 Summary

The work is done jointly with the stakeholders. It establishes the effectiveness mea-
sures and the equations and surveys to evaluate them. The attributes identified must 
be included in the structure model. The defined effectiveness measures guide the 
structure and behavior modeling in defining a modest number of important alterna-
tive solutions for the system. This core step provides the mechanism for getting effec-
tiveness measure values from stakeholder preferences, structure and behavior. It 
provides the mechanism for generating priorities for the effectiveness measures and a 
cost function that picks out the near optimal solution.

The use of trade-off and effectiveness measure criteria which are derived from 
the product stakeholders is a distinguishing best practice in the engineering of com-
plex systems. The complexity is handled by the use of powerful abstractions in com-
puter modeling of behavior and structure. Defining product with high value, 
competitive performance, low cost, and good fit to the market is a result of trade-off 
with effectiveness measure criteria.
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6.9 Exercises

1. Repeat the analysis of the problem described in Section 6.4, How Effectiveness 
Measures Drive the Solution on page 142. Use the same three concurrent functions, 
Figure 6-2., Behavior of Three Independently Concurrent Functions on page 142 
and the same time line, Figure 6-3., Timeline on page 143. Consider the same com-
binations of effectiveness measures. 

a. Find the alternative designs possible when two resources are available as 
shown in Figure 6-12., Two Resources. 

b. Extend Table 2., System Alternatives & Effectiveness. to include the additional 
alternative designs.

2. Identify stakeholders for the following.

a. halogen table lamp

b. farm tractors

c. quality assurance consulting

3. In general, in the U.S., black olives come in cans, spanish (green) olives come in 
clear, glass jars. What effectiveness measures might account for this difference?

4. Design a set of effectiveness measures, using the process in Figure 6-11., FFBD 
View of Define Effectiveness Measures, Core Step 2 on page 152 for

a. an integrated circuit fabrication plant

b. an internet browser

c. a clock radio

Resources

Object H

Cost $100
Speed 1.0x

Function A
Function B
Function C

Object L

Cost $150
Speed 1.5x

Function A
Function B
Function C

Figure 6-12.  Two Resources
154



Define Effectiveness Measures
d. a procedure for financial auditing

5. For each of the effectiveness measures in question 2 

a. classify the kind

b. prioritize the measures and state the reason.
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Create Behavior Model
7.1 What Core Step 3 Is

Core Step 3 creates the behavior of whatever thing or object the engineer is consider-
ing. If the engineer is defining the context of the system or subsystem, it is necessary 
to define the behavior of each external object in the environment that excites the sys-
tem. As the excitations are defined, the responses of the system or subsystem need to 
be defined. These excitations and responses are behaviors. They capture in rigorous 
and executable form the information which is expressed in text operations concepts 
or requirement statements. They first define the intrinsic behavior that the system or 
subsystem shall have. This is the behavior as allowed by nature, incorporating the 
sequences and alternatives demanded by reality and preserving the concurrencies 
allowed.

The intrinsic behavior is often transformed to a design behavior by serializing 
concurrencies or pipe-lining sequences for performance reasons. 

The design behavior is the emergent behavior of the interacting assembled com-
ponents that constitute the system. It results in the same set of responses to excitations 
as the did the intrinsic behavior, but may be faster and less expensive when imple-
mented.

Generally the creation of behavior models occurs concurrently with the defini-
tion of effectiveness measures and with the creation of structure models. The effec-
tiveness measures guide and reduce the work of creating behavior and structure 
models by defining what is of greatest value. The structure models provide for effi-
cient choice of the best pieces and parts to use, and they help the engineer keep the 
behaviors being created within reasonable reach of the feasible. In this competitive 
global market place it is essential to push the system close to its limits, but it is also 
vital to stay within feasibility and to do the engineering at low cost. 

Behavior models play a particularly important role in the re-engineering of sys-
tems which are poorly documented. In this case it is frequently important to reverse 
engineer and synthesize an understandable higher level behavior of the system from 
the existing lines of code or from the behaviors of a multitude of individual parts. The 
existing emergent behavior of the system must often be preserved in the new system 
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with enhancements. Yet the available detailed documentation of behavior may only 
describe the behaviors of individual parts or of lines of code or may not match the 
actual system. 

7.2 How to Create Behavior Models

Chapter 3, “Basics of Behavior” beginning on page 67, describes the basics of model-
ing behavior. This chapter draws upon those results to define the detailed steps 
involved in creating a behavior model. The detailed steps are described in text, are 
made explicit with a model, and are illustrated with a simple example.

Figure 7-1., FFBD View of Core Step 3, is a Functional Flow Block Diagram of 
an engineer’s behavior in creating a behavior model for the object or thing under con-
sideration.

The first three steps in the engineer’s behavior, 3.1, 3.2, and 3.3, are concurrent 
and in general have no established order. The information already developed about 
effectiveness measures is accepted and interpreted in step 3.1. For the modeling of a 
particular subcomponent some of the effectiveness measures may be unimportant and 
others important and requiring interpretation. For example, in the development of a 
satellite, designing to minimum weight is an important effectiveness measure. Yet the 
physical weight of a custom high speed integrated circuit chip may be unimportant. 
However, the power consumption of the kinds of chips used may be very important to 

And

3.1
Accept

Effectiveness
Measures

3.2
Accept

Structure
Model

3.3
Accept

Available
Information

3.7
Validate

3.4

3.5
Order

3.6
Define

3.8
Evaluate

Functional
Interfaces

3.9
Output

Behavior

Functions

Input/Output

Behavior

Information

3
Create

Behavior
Model

Define
and Trace
Functions

Figure 7-1.   FFBD View of Core Step 3

And
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satellite weight because of the impact on power storage, solar energy arrays and heat 
dissipation. Power consumption is likely associated with chip processing speed and 
hence the time for completion of a behavior.

The information developed in prior modeling of structure is accepted in Step 3.2 
and used in this modeling of behavior. 

All of the applicable available information is accepted and used in Step 3.3. 
Often this includes text requirements and an operations concept which describe what 
the particular subcomponent must do. The available information may include behav-
ior models developed earlier that are to be used or refined.

The second set of three concurrent steps in Figure 7-1., FFBD View of Core Step 
3, 3.4, 3.5, and 3.6, build the behavior needed at this stage of the engineering. Step 
3.4 defines the functions that are needed and develops traceability links to text 
requirements which are applicable. The definition of the functions may suggest 
derived requirements associated with them which require traceability links to the 
functions and to parent requirements. 

It is possible to do the engineering development using models and a data dictio-
nary rather than with text requirements. Presently this approach is rare in practice. 
When the modeling approach is used, the functions will be a decomposition of a func-
tion in a previous behavior model. The text requirements exist as explanations in the 
accompanying data dictionary and are automatically linked to functions and parent 
requirements as they are developed. 

Step 3.5 of Figure 7-1., FFBD View of Core Step 3, orders the functions. Steps 
3.4 and 3.5 are not sequential. Defining the functions will involve thinking about their 
order, and ordering the functions will result in the discovery of new functions needed 
or in the modification of ones already selected. These two steps are concurrent. The 
result of completion of these two steps is the information needed for a Functional 
Flow Block Diagram view of the behavior. The information can be captured by con-
structing this view with a graphic tool or by creating part of a behavior model. 

Step 3.6 of the figure defines the Input/Output items for each function. In I/O 
intensive or data intensive systems, the I/O information may be more important, rele-
vant, and available to engineers than the ordering of functions. It may be very impor-
tant to the definition of the functions. The I/O - Function view of behavior, a Data 
Flow Diagram, may be of greater interest than a Functional Flow Block Diagram. 
This step is concurrent with 3.4 and 3.5 and may cause modification of their results.

When all three definition steps have been completed, the result is an executable 
behavior. Step 3.7 is the execution of the behavior, manually by engineers or automat-
ically with a tool. It validates the behavior. The execution will find problems such as 
starvation or deadly embrace. By associating time budgets with each function the 
execution will generate an overall time line for the behavior. If this style of modeling 
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has been carried out consistently during the development of the tree of parts that con-
stitute the system, the time line for a subcomponent can be studied for its impact on an 
overall response thread of the system to an external excitation. In many developments 
there is no deterministic time of completion for the functions but probabilities of com-
pletion can be estimated for them. In such a case it is often possible to execute the 
behavior as a monte carlo calculation to generate a probability for overall success. 
This is useful for detection types of systems like medical imaging, flaw detection, 
radar, and sonar systems. It is useful for systems with statistically known excitations 
like communication systems and management information systems.

Step 3.8 evaluates the functional interfaces. It is particularly useful in situations 
in which the magnitude of input/output is known and the rate of generation and con-
sumption is known for functions. In these situations the flow at interfaces can be 
established once the behavior has been demonstrated to be error free in step 3.7. Wait 
times due to lack of input are established. Accumulation of output is determined and 
can be correlated with the amount of storage capacity available or required.

The final step, 3.9, generates all the behavior information needed for the engi-
neering information base in the form required. It is important to remember that engi-
neering is an art of finding a near optimal solution with a minimum of effort. If some 
of the steps in Figure 7-1., FFBD View of Core Step 3 on page 158 can be skipped in a 
particular problem without negative impact, then that is done.

 If it is necessary to cycle from any later step to any earlier step, then that is done. 
There are too many possible backward loops to show them in the figure. The back-
ward loops were all accounted for in the Perform Change Control process step No. 2, 
as shown in Figure 4-5., Model for the System Engineering Process on page 106. This 
step provides a complete process for the discovery of any issue and its resolution by 
any alteration of the progression of work, whether the issue involves the personal 
work of only one engineer, or involves the entire engineering team and revision of 
contract with a customer. Details for Perform Change Control are described in “Dis-
covery and the Change Control Process” beginning on page 328.

7.3 Example of Behavior Development - Bottling Wine

In order to discuss a system behavior, elements external to the system must first be 
developed. These external elements form the context for the system. As suggested 
before, the context can be stated in several ways:

• Executable Requirements, captured in models 

• Requirements expressed in text

• An Operations Concept described in narrative prose.

In addition, Effectiveness Measures are developed in parallel and guide efficient 
development of behavior and structure models.
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For the purposes of this example, bottling wine, we will assume the existence of 
context information without debating its technical merit or how it came to exist. Fig-
ure 7-2., Context Diagram for Bottling Wine, shows the context using an information 
model. This is the structure information which is the input to step 3.2 of Figure 7-1., 
FFBD View of Core Step 3 on page 158.

 

Very often a large complex problem can be broken into weakly interacting parts 
by examining the context of the system. It is then useful to have separate teams 
develop the weakly interacting parts and to carefully combine the results and make 
them coherent. To simplify this example only the interactions between the Wine-
maker and the Wine Bottling System will be considered in this chapter. The other 
interactions in the context are suggested as an exercise.

 The context can be described with text as a set of requirements.

7.3.1 External System Behavior 

Name of the external system(s) causing an excitation of the system

• Winemaker

The excitation behavior

• The Winemaker shall order bottling of a specific number of bottle of wine.

• The Winemaker shall specify the barrels of wine to be used.

• The Winemaker shall specify the time for completion of bottling.

Wine Bottling

Bottle wine

Bottling

Supply items

Storage

Accept wine

Winemaker

Make wine

System

stores Get supplies

Supplies

supplies

order bottling

Order bottling
Specify source
Specify time

& provide wine

Get wine
bottles

available

Facility

Figure 7-2.  Context Diagram for Bottling Wine
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•  The Winemaker shall make the barrels of wine available

Inputs to the system

• Location and identity of the stored wine from Winemaker

• Location of other necessary supplies from Bottling Supplies

• Time of completion from Winemaker

• Number of bottles to be filled from Winemaker

• Start bottling command from Winemaker

Functional Requirements of System

• The system shall fill bottles with wine

• The system shall cork bottles of wine

• The system shall label bottles of wine

Outputs from the System

• Bottles of Wine to Storage

• Request for Wine Barrels to Winemaker

• Request for Supplies to Bottling Supplies

Name of the external system(s) receiving the Outputs from the System

• Bottled Wine Storage

• Bottling Supplies

• Winemaker

7.3.2 Temporal Performance Requirements

Time duration or probabilities associated with the excitation scenario

• The excitation system shall provide a stimulus at uncertain intervals with the 
highest demand of 100 bottles per day.

7.3.3 Non-temporal Performance Requirements
• Number of bottles to be produced

• The system shall produce bottles of wine at a rate up to 100 bottles of wine per 
day. 

• Material cost per bottle $1.00 or less
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• Labor cost per bottle $1.00 or less

• Investment cost of $400.00 or less

Pre-determined design

• none

Reference requirements that refer to documents and models that apply to the system

• none

7.3.4 Operations Concept for System Context
The Winemaker decides that it is time to bottle the wine in one of the barrels. She 
tells the Wine Bottling System of this decision and provides information about which 
wine is to be bottled, the number of bottles, and when it is to be completed. The sys-
tem uses supplies from Bottling Supplies to bottle the wine and prepare the bottles for 
sale or consumption. The prepared bottles are placed in a wine rack ready to be taken 
to storage in the Storage Facility.

7.3.5 Behavior of the Winemaker
The static context model of Figure 7-2., Context Diagram for Bottling Wine provides 
only partial information about the excitations of the system. It shows only the func-
tions carried out by the Winemaker. The behavior of the winemaker for excitation of 
the Wine Bottling System is completely defined in Figure 7-3., Behavior of the Wine-
maker.
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The four functions listed in the object picture for Winemaker in Figure 7-2., 
Context Diagram for Bottling Wine, are all captured in Figure 7-3., Behavior of the 
Winemaker, with their ordering and input/outputs. 

Note that as presented here the text descriptions and the models are somewhat 
redundant. The combination is most efficient when the text is created in a data dictio-
nary as an explanation for each element in the models.

7.3.6 Effectiveness Measures
1. Bottle wine at minimum cost.

2. Complete the bottling as quickly as possible.

3. Ensure there is no foreign matter in the bottles of wine.

4. Bottle only good wine.

The effectiveness measures capture a small subset of requirements that are vital for 
success in the marketplace for competitive cost, schedule, and quality reasons. 

7.3.7 Intrinsic Behavior
Having been given the context diagram and other text requirements, or a text opera-
tions concept, we are now ready to begin developing a model of the behavior for our 
system. For most systems the engineers have preconceived design ideas which may, 
even unconsciously, affect their decisions in modeling the behavior. Especially at 
these early stages of development care must be taken not to introduce artificial limita-
tions. The behavior of the system will be developed in stages in the example in the 
way it might emerge in real work. What happens in real work is highly interactive 
with discoveries and return to earlier work. It is not neat.

Top Level Behavior
Consider the problem of bottling wine, the work of bottling it when the wine and other 
needed items are available but stored. 

The first set of tasks includes getting the wine, the corks, etc., to the area, per-
haps a kitchen, where the bottling will be done. This is Intrinsic Behavior in that it 
must be done by any bottling system whether it is transporting the items to the feeders 
in a bottling plant or carrying items from a home basement to a kitchen. Thus, we 
begin the design by breaking the behavior into two functions taking place serially.

• Gather Supplies, and

• Produce the Bottles

These are shown in Figure Figure 7-4., Top Level FFBD for Bottling Wine, using the 
Functional Flow Block Diagram notation. 
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Expanding Gathering Supplies
There are several subtasks within Gather Supplies. In particular we find the wine, get 
the bottles, get the corks, get the cleaning supplies, and get the labels. A critical ques-
tion to ask is: Can these tasks be done in any order, or is there an imposed sequence? 
The answer in this case is that they can be done in any order. This is represented in 
Figure 7-5., Gathering Supplies For Bottling Wine, as a concurrency in that Func-
tional Flow Block Diagram. The arrows, once again, represent sequence. The and 
shows that the following steps may occur in parallel at the same time.

This is the concept of intrinsic behavior. Although this set of steps need not be 
performed in parallel, they can be done in parallel and so they are modeled that way.

.

Produce the

Bottles

Gather

Supplies

Figure 7-4.  Top Level FFBD for Bottling Wine
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Figure 7-5.   Gathering Supplies For Bottling Wine
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Expanding Produce the Bottles
As with Gather Supplies there are several subtasks involved to Produce the Bottles. 
The bottles must be filled, corked, labeled and cleaned. In addition to this basic set of 
functions, a few other functions are also necessary to have a robust behavior for bot-
tling wine. Our Effectiveness Measures stated: ‘Ensure there is no foreign matter in 
the bottles of wine’. We derive from this a requirement that the bottles be clean prior 
to being filled. 

Thus we introduce several functions for cleaning the bottle and testing to deter-
mine if it is clean enough to use. Figure 7-6., Fill the Bottles for Bottling Wine, shows 
the FFBD for this portion of the behavior. An additional semantic constructs was 
needed to describe what happens to unclean bottles. The function Look At Bottle is a 
branch point, or a selection point, for the behavior with conditions for each of the 
alternative paths that follow. If the bottle is clean, the filling process follows. If the 
bottle is dirty it is discarded.

.

If one reverses the steps of clean, fill, and cork the bottle, one has a corked, 
clean, empty bottle. These steps need to be done in this sequence. Nature and reality 
do not allow them to be reversed. This is the concept of intrinsic Behavior. It captures 
what nature allows in its most general form.

Putting it All Together
Figure 7-7., Completed Functional Flow Block Diagram, Bottling Wine, now shows 
the completed FFBD for the intrinsic behavior of bottling wine. The actual Design 
Behavior of the system depends upon the available resource, on the Effectiveness 
Measures that have been adopted for optimization purposes, and on the number of bot-
tles to be produced.

Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

OK

not OK

Figure 7-6.   Fill the Bottles for Bottling Wine
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. 

7.3.8 Emergent Behavior
While Figure 7-7., Completed Functional Flow Block Diagram, Bottling Wine, pre-
sented a final version of the intrinsic behavior we have not yet finished with the 
behavior modeling. We now have to consider what the desired emergent behavior is. 
Factors which will alter the behavior that do not involve the structure of the final sys-
tem should be considered. Considerations of this sort tend to limit the overall general-
ity of the intrinsic behavior. 

Deriving the appropriate emergent behavior from the intrinsic behavior is one of 
the key creative portions of systems engineering. No amount of formal methods and 
approach can overcome bad decision making. Neither can they replace experience 
and creativity in engineering. We stress as best practice the use of executable models 
to help evaluate the decisions before a large commitment is made to producing the 
parts of the system. With that as general guidance, we push on to crafting the emer-
gent behavior. 

The effectiveness measures in the available information have not yet been used 
in the example. Much of the impact of the effectiveness measures will be on the map-
ping from behavior to structure. They also play an important role in developing the 
emergent behavior. Focus on the first two effectiveness measures.

1. Bottle wine at minimum cost.

2. Complete the bottling as quickly as possible.

3. Ensure there is no foreign matter in the bottles of wine.
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Figure 7-7.   Completed Functional Flow Block Diagram, Bottling Wine
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4. Bottle only good wine.

and look at the intrinsic behavior as shown in Figure 7-6., Fill the Bottles for Bottling 
Wine. Minimum cost may not be quick. Some modifications can be made to the 
behavior at this point to balance these opposite pulls. In particular we look at the deci-
sion making involved with inspecting the bottle. The intrinsic behavior takes into 
account only the need to have a clean bottle into which to put the wine. The bottle is 
thrown away if it is not clean after one washing. This may lead to the disposal of many 
bottles which might become clean if they were washed a second time. We can modify 
the behavior to reduce the cost of disposing of bottles with little impact on completion 
time. The proposed change in shown in Figure 7-8., Modified Functional Flow Block 
Diagram, Bottling Wine.

.

In the justification for making this change we used some rather loose reasoning that 
one effectiveness measure would be improved and another would be minimally 
affected. Choices of this sort are the heart of systems design and greatly impact the 
merit of the total system design. In Figure 7-8., Modified Functional Flow Block Dia-
gram, Bottling Wine, the bottles are washed a maximum of three times, but two times 
or some other number of times might be optimal. It is in Core Step 5, Perform Trade-
off Analysis, that these trade-off decisions are fully defined and performed quantita-
tively. The trade-off analysis cannot be carried out until decisions have been made 
about how the system will be built, what objects will be used, the attributes of those 
objects, and what alternative structures are to be considered during Core Step 4, Cre-
ate Structure Model.

Figure 7-8.   Modified Functional Flow Block Diagram, Bottling Wine
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Though this behavior may now seem complete it is still defective in one impor-
tant aspect which demonstrates the importance of engineering experience, creativity, 
and wisdom. It is related to Effectiveness Measure 4. “Bottle only good wine” which 
has not yet been taken into account. The defect in the behavior is that one tastes the 
wine before doing the tasks to ensure that one bottles only good wine. It is left as an 
exercise to add the necessary functions, branches, conditions, and iterations to incor-
porate “Taste the Wine.” 

7.3.9 Completing the Behavior - Adding Inputs and Outputs
What has just been modeled is but one view of behavior, the functions and control. In 
order to have a semantically complete, and therefore executable, model the inputs and 
outputs must be added. Figure Figure 7-9., Top Level behavior for Bottling Wine, 
shows the function flow block diagram of Figure 7-4., Top Level FFBD for Bottling 
Wine on page 165, augmented with input/output for each of the top functions. 

The inputs and outputs for the next level Functional Flow Block Diagram can 
also be added to produce the second level behavior of Figure 7-10., Second Level 
Behavior for Bottling Wine. In that figure, second level input/output has been added 
and the I/O items Stored Supplies, which come from the external system Stored Sup-
plies, and Gathered Supplies have been decomposed into their second level parts.
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Figure 7-9.  Top Level behavior for Bottling Wine
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This now provides enough information, expressed formally, to start at the begin-
ning and simulate the system’s operation. To do this we employe the models for exter-
nal systems in this systems context, in this case the behavior model for the Winemaker 
and the behavior model for Stored Supplies. The external systems provide the neces-
sary stimulus to our model to fully define its synchronization with the external world 
and to observe our system’s internal behavior as responses. The models are explicit 
and leave no ambiguity as to what the system is to do.

7.3.10 Views of Behavior
When the inputs/outputs, functions, and the ordering of functions by control opera-
tions are all included in the model, behavior is fully modeled and executable. There is, 
however, a drawback to this view. The full models of behavior contain a great deal of 
information and can be hard to read. To overcome this, two useful simpler views can 
be used:

• A view of function and its ordering by control (the functional flow block dia-
gram we have been using, is such a view) and

• A view of function and input/output such as a data flow diagram. 

The various diagraming techniques for the elements of behavior have been developed 
over many years starting as early as the 1950s when the FFBD was first introduced. 
Such diagrams convey information that is difficult to express in a textual language 
with the same level of completeness. With any successful diagraming techniques, 
semantic information must be readily apparent to engineers developing and reviewing 
system designs.
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This function and input/output view of behavior has been captured in several 
different diagrams which use different syntax. To name a few;

• Data Flow Diagram

• N Squared Chart

• IDEF0 Diagram

• Requirement allocation sheets, in text

Figure 7-11., Data Flow Diagram for Bottling Wine is a Data Flow Diagram 
produced by removing all of the control symbols from the behavior.

.

This data flow diagram with the control information removed can be rearranged 
to make the information it represents more readable. Figure 7-11., Data Flow Dia-
gram for Bottling Wine, shows the rearranged version which serves as an example of 
the importance of layout in any of these diagramming techniques. Although the 
semantic content is the same between the two versions of the data flow diagram, the 
understandability of the content for humans is dramatically improved in the second 
diagram.
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This view of behavior captures all of the input/output relationships with func-
tions. It does not carry all of the information to describe whether functions participate 
in concurrency, simple sequencing, or alternative path branching. It does, however, 
contain enough information to give insight concerning the control information just as 
the function and control view provides some insights to the data flow considerations.

A closer look at the data flow diagram for bottling wine reveals a limitation imposed 
by the functional flow block diagram. The limitation that our FFBD requires all of the 
gathering supplies activities to be completed prior to beginning any of the bottle prep-
aration and filling tasks. One look at the data flow diagram, especially the reformatted 
version, shows that this is clearly not necessary. Only two of the gathering supplies 
tasks, Get Wine Bottles and Get Cleaning Materials need to be completed before the 

Figure 7-12.   Reformatted Data Flow Diagram for Bottling Wine
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first of the bottle preparation tasks can begin. Figure 7-13., Revised Functional Flow 
Block Diagram, shows the impact of these changes on the original FFBD in Figure 7-
7., Completed Functional Flow Block Diagram, Bottling Wine on page 167. It is 
worthwhile, therefore, to consider what decisions we made that led to an unnecessary 
limitation.
 

A quick review shows that nearly the first decision made caused the problem. 
Figure 7-4., Top Level FFBD for Bottling Wine on page 165 divided the behavior into 
two elements: Gather Supplies and Produce the Bottles. This first division created the 
unnecessary limitation, yet at the time it appeared to be a reasonable expression of 
intrinsic behavior. Which FFBD is more desirable to use, Figure 7-8., Modified Func-
tional Flow Block Diagram, Bottling Wine on page 168 or Figure 7-13., Revised 
Functional Flow Block Diagram? That question cannot be answered until the behav-
ior information is combined with structural information that defines how the work 
will be done. There may be other variants of behavior that will be found to be impor-
tant as structure alternatives are considered. This reinforces the need to perform Core 
Steps 2, 3, and 4 concurrently. It is a major strength of the modeling techniques that 
they detect and raise such issues early in the development and provide means for 
quickly resolving the issues quantitatively to find a near optimal solution.
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7.3.11 Behavior, Structure, and Effectiveness Measures
For this part of the example, assume that the dominating Effectiveness Measure is to 
bottle the wine as quickly as possible. If only one person is to perform this task manu-
ally, then the work of gathering items, Figure 7-5., Gathering Supplies For Bottling 
Wine on page 165, must be serialized.

There are five factorial or 120 ways to do this. One person using any of these 
120 serialized sequences is a design, a mapping of the behavior onto a particular set of 
objects. This transformation of the Intrinsic Behavior into a Design Behavior does not 
alter the response of the system. Such transformations occur in the development of 
large complex systems. 

Downstream from the initial serialization of a concurrency an engineer working 
on a single component may have no idea that the sequence on which he is working 
was once a concurrency. If additional resource becomes available for incorporation 
into the design, it may be valuable to recover the Intrinsic Behavior and allowed con-
currencies. It is important to record and keep the information of the Intrinsic Behavior, 
the Design Behavior and the issues and reasons for the transformations in going to 
design.

Intrinsic sequences may also be transformed to optimize Effectiveness Mea-
sures. If three people are available to bottle wine, then the sequential tasks may be 
done concurrently, by setting up a pipe-line process.,

1. clean 

2. look

3. fill

4. cork, and

5. label 

Exactly how the pipeline is done depends on the length of time required for each 
task, on the number of people or amount of resource available, and on the Effective-
ness Measures applied. In this case a reasonable architecture with three people is to 
have two people clean bottles because they must be filled and rinsed repeatedly, and 
one person fill, cork and label bottles. In complex systems quantitative trade-off is 
performed to make such decisions.

Note that a best practice of systems engineering work is to follow the steps of the 
core systems engineering process. One creates effectiveness measures, one creates an 
intrinsic behavior, and one examines sets of objects to perform the behavior. Which 
set of objects to use and how the behavior is apportioned among them is a matter of 
trade-off against a set of criteria. The result is an accepted architecture which encapsu-
lates the Design Behavior which is a transformation of the Intrinsic Behavior that 
meets needs and is allowed by reality
174



Create Behavior Model
If the Effectiveness Measures were altered, then the entire solution could 
change even with the same resource availability of three people. Consider the follow-
ing altered Effectiveness Measures:

1. Have the best party possible

2. Always have ongoing work to avoid criticism

3. Bottle no more than 3 bottles of wine to serve as the Annual Memorial Wine 
Bottles

4. Drink the rest

A potential solution is to have Tasting taking place in parallel with every other step, a 
modification of the Intrinsic Behavior. Allocate no more than one person to work on 
bottling at any time. The wine bottling example has to this point illustrated the rele-
vance of:

• intrinsic behavior imposed by nature

• design behavior, transforms of the intrinsic behavior to optimize the design

• emergent behavior, the behavior exhibited by the integrated system. It should 
be the design behavior.

• concurrency in considering behavior, structure and effectiveness measures

• the semantic structures (functions, input/output, control) needed for behavior

7.4 Scenarios and Response Threads as Paths through Behavior

It is often desirable, at any tier of development, to partition the creation of the behav-
ior modeling to simplify the problem and distribute it among teams. The excitation 
and the response behaviors of complex systems often encompass many alternate par-
allel paths. One of the powerful techniques for simplification and distribution is to 
consider one-by-one the paths through the excitation behavior of the external sys-
tems.   Each of these excitation paths is called a scenario. For each scenario there is 
one or more response path from the system, depending upon the conditions at the 
time of the excitation. Each of these response paths is called a response thread. The 
analysis of systems by the use of excitation scenarios and response threads is a pow-
erful way to do the modeling described here and to partition the work among teams. It 
is also important to realize that the scenarios and response threads must merge into 
coherent and error free behaviors which contain branch points that define all of the 
alternative paths. When scenarios and responses are defined independently by sepa-
rate groups of people, they can easily be defined such that they are incompatible.

A second technique for partitioning the modeling of systems with complex 
behavior first develops the “normal” behavior of the system - the behavior when 
everything goes right. After this has been done, the engineer considers each step in 
the behavior and considers how the behavior should be altered for safety, for reliabil-
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ity, and for all possible things that might go wrong (Carson 1995). Common examples 
are recovery and rollback of computer based systems after a system crash, vending 
machines that handle coins and slugs, and automobiles with safety belts and air bags.

7.5 Behavior, Context and Traceability, an Information Model

This chapter has described how to model behavior, how behavior is related to context, 
and how traceability is maintained between text requirements and model elements. A 
simple example has illustrated the concepts. Figure 7-14., Information Model for Text 
Requirements, Behavior, and Context, is a complex information model that summa-
rizes these many pages of text on a single page. A complex model such as this has the 
disadvantage of carrying such a large amount of detail that it requires careful study for 
comprehension. It has the advantage of enabling the reader to see all of the informa-
tion on one page and to focus carefully on the detail in limited regions of the model 
while seeing how that region relates to the whole. The figure combines parts of earlier 
figures. The basic structure of behavior is shown without shading. The classification 
of requirements by how they are used is shown with dark shading Associations among 
context elements are shown with intermediate shading.

7.5.1 Explanation of the Context Region
Examine the Object element in the top right part of Figure 7-14., Information Model 
for Text Requirements, Behavior, and Context. Every object is built from many other 
objects. This is shown by the recursive aggregation. Every object has several different 
roles it may play in the modeling of a complex system. The role of the object depends 
upon how the engineers view the object based on what they are developing for the sys-
tem. For example, an automobile engine is the Subject System to the engine design 
team. The engine is a Component to the automobile design team, it is an External Sys-
tem to the transmission design team. It is an Output from the engine manufacturing 
facility, an Input to the automobile assembly plant, and an Input and Output to the 
just-in-time logistics system that delivers parts to the assembly plant. A single object 
has all of these roles for different engineering teams.
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Every Subject System is interconnected with one or more External Systems 
which excite it and to which it responds. The interconnection is called an interface and 
is often sufficiently important that it is considered to be an object, called Interface, and 
is fully documented. Both kinds of systems have attributes, and have a behavior.

7.5.2 Explanation of the Behavior Region
The Behavior object is shown in the center of Figure 7-14., Information Model for 
Text Requirements, Behavior, and Context. As explained in earlier chapters, it is built 
from Input/Output and from Function. The Functions are ordered by Control Opera-
tions. 

To simplify this already complex diagram, associations that define the Control 
Operations and that classify the Input/Output are not shown. Structure Operations 
define the behavior hierarchy through a hierarchy of Functions and of Input/Output 
These are the same Structure Operations that are used to define the Subject System 
structure. Each External System has or encapsulates an External Behavior. That 
behavior can be decomposed into a set of many Scenarios, each of which is an alterna-
tive path through the External Behavior. Similarly, each Subject System has or encap-
sulates an Internal Behavior. That behavior can be decomposed into a set of many 
Response Threads, each of which is an alternative path through the Internal Behavior 
of the Subject System. For every Scenario there is one or more Response Threads. For 
each Response Thread there is one or more Scenarios that excite it.

7.5.3 Explanation of Traceability and Budgeting

Functional Requirement Traceability
The Functional Requirements trace directly to the Functions which implement them. 

Temporal Performance Requirement Budgeting
The Temporal Performance Requirements are time durations which must be met by 
entire response threads. When the Temporal Performance Requirements are created, 
there is generally no knowledge of how many Functions and what Functions will 
implement the response. Consequently the Temporal Performance Requirements are 
usually a single time duration number or probability distribution that applies to an 
entire response thread. Because a number of functions will implement a Response 
Thread, the single number or probability distribution must be broken or budgeted into 
increments which are assigned to the individual functions. 

How this budgeting is done depends on the details of the behavior, which Func-
tions are in parallel or in series. It can be done in advance of defining the structure, but 
it must be revisited and likely redone for each of the alternative design structures 
when they have been established and the functions mapped to the structures. It is most 
efficiently done when behavior creation and alternative structure creation proceed 
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concurrently. A particular Function might be assigned to a person, a machine, a slow 
computer, or a fast computer. The time to execute that Function will depend upon the 
choice made. Usually it is the overall response time of the Response Thread which is 
important and required rather than the time to complete any one function. It is very 
useful to create traceability links among Scenarios, Response Threads and Temporal 
Performance Requirements when the latter are received in text form, (White 1994). 
This occurs naturally when the system is developed with models and the Scenarios 
and Response Threads are executed to produce time lines based on the budgets 
assigned to the Functions

Non-temporal Performance Requirement Traceability 
These requirements trace to the attributes of objects in the Structure Model, they do 
not trace to elements in the Behavior Model.

Design and Traceability
Often engineers receive design in the documents for requirements. This may happen 
because the system is constrained by other existing systems or by the realities of 
logistics, interoperability or suppliers. Often, however, the imposed design is inap-
propriate and needs to be rewritten as a requirement. Because of this, these text state-
ments are referred to as Design rather than as design requirements. It is important to 
raise an Issue with the source of the Design statements, and develop a Resolution to 
the Issue. That Resolution will throw the Design statement away, will transform it 
into one of the other types of requirements, or will keep the Design statement as an 
Adjudicated Constraint that dictates what will be used. It may dictate that a particular 
Input/Output, Function, or Object be used. The traceability links to Objects appear in 
the Information Models for Structure in the next chapter.

Interface Requirements
The Interface Requirements trace directly to the Interfaces. They are critically impor-
tant to ensure that components which are developed independently will integrate 
smoothly and to provide for interoperability.

7.6 Pitfalls in Developing Scenarios and Threads

When many engineers are developing the scenarios and response threads for the sys-
tem and its context, it is very important that the scenarios and threads be aggregated 
into coherent behaviors or obtained by decomposing coherent behaviors. It is very 
easy to create sets of scenarios and response threads which cannot be combined 
coherently into a behavior and which will lead to integration problems when the sys-
tem is built and assembled. There are techniques being used, like Use Case develop-
ment (Jacobson et al. 1992), which do not guarantee the compatibility of the 
scenarios and response threads. Neither do they support trade-off by keeping behav-
ior and structure separate, but rather they inherently mix the two. They are efficient 
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and useful in working through a single design alternative, but must be redeveloped if 
the structure is changed by adding or deleting objects, or by combining or subdividing 
objects. They are much more useful in software engineering where trade-off is not a 
major issue than in systems engineering for which trade-off is a distinguishing best 
practice. When an executable behavior is allocated to a design, the use cases can be 
generated automatically by executing the behavior and tracking the individual paths.

7.7 Summary

How to create behavior models has been explained as a process and with a simple 
example. The important associations among the modeling elements have been 
described with information models and in text.

The examples have shown that the Definition of Effectiveness Measures, the 
Creation of Behavior Models, and the Creation of Structure Models are closely 
related. Discoveries and new insights in any one of these activities has major implica-
tions for the others. They are concurrent activities. The Effectiveness Measures guide 
the engineers in efficiently creating the intrinsic Behavior Model that will meet mar-
ketplace needs. 

The next chapter shows how the Effectiveness Measures guide the engineers in 
efficiently creating the Structure Models that record the selection of alternative com-
ponents and structures which constitute design and architecture. It shows how the 
Intrinsic Behavior is transformed to a Design Behavior to match alternative designs.

7.8 Exercises

1. Create Behavior Models at the top level for the Bottling Supplies and Storage Facil-
ity objects in Figure 7-2., Context Diagram for Bottling Wine on page 161.

2. Link the two models above to the top level models for Winemaker, Figure 7-3., 
Behavior of the Winemaker on page 163, and for Wine Bottling System, Figure 7-
13., Revised Functional Flow Block Diagram on page 173. Add any behavior ele-
ments needed. You will find it necessary to decide whether the Wine Bottling Sys-
tem makes requests which were not modeled in the book.

3. Create a parts list for the Input/Outputs of Wine Bottling System, see Figure 7-10., 
Second Level Behavior for Bottling Wine on page 170 and Figure 7-11., Data Flow 
Diagram for Bottling Wine on page 171. Consider in particular Stored Supplies and 
Gathered Supplies.

4. Consider all of the changes found necessary to add to the Top Level behavior of 
Wine Bottling System. Propagate any changes needed into the second level behav-
ior of Wine Bottling System, Figure 7-13., Revised Functional Flow Block Dia-
gram on page 173.

5. Introduce the necessary functions, branches, and conditions to add “Taste the 
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Wine” to Figure 7-13., Revised Functional Flow Block Diagram on page 173.

a. Use the process in Figure 7-1., FFBD View of Core Step 3 on page 158 to cre-
ate a behavior model for the context level of an automobile.

b. Create a behavior model for an engine

c. Compare the models developed in questions a and b. What changes are neces-
sary to make the engine fit at a lower tier within the automobile. 

6. Does the behavior shown in Figure 7-13., Revised Functional Flow Block Diagram 
on page 173 adapt to an assembly line? Describe how it does or why it does not.
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Create Structure Model
8.1 What Core Step 4 Is

 Core Step 4 is the work done by engineers to create models of how things are built 
from parts, both physical and logical, and what parts to use. Professionals in different 
disciplines may prefer to call these models design models, object models, information 
models or architecture models. The choice of particular names is difficult because 
any single concept is often named with a different word by the workers in different 
engineering disciplines, and the naming is important to the workers in each field. 

With the advent and popularity of object-oriented software methodologies, the 
software engineering world is using concepts of abstraction of things (objects) and 
the encapsulation of behavior by objects, that have been practiced in mechanical, 
electrical, and other engineering professions for many years. It is critically important 
that the systems engineer be able to communicate rigorously with all of the engineer-
ing disciplines by transforming the systems information into the views, representa-
tions, notations and names understood by each discipline. This chapter focuses on 
several aspects of structure modeling:

• A Behavior Model for the process of Core Step 4

• An example of selecting parts and creating a Structure Model

• An Information Model for Core Step 4

• How architecture and design are generated by the repeated core steps of sys-
tems engineering technical work

• How architecture is related to effectiveness measures and reusable components 

• How design is simplified by architecture and reusable components 

8.2 Creating Structure Models

Chapter 2 describes the basics of modeling structure. This chapter draws upon those 
results to define the detailed steps involved in creating a structure model. The detailed 
steps are described in text, are made explicit with a model, and are illustrated with a 
simple example.
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Figure 15., FFBD View of Core Step 4, is a Functional Flow Block Diagram of 
an engineer’s behavior in creating a structure model for the object or thing under con-
sideration.

The first three steps in the engineer’s behavior, 4.1, 4.2, and 4.3, are concurrent and in 
general have no established order. The information already developed and being 
developed concurrently about effectiveness measures is accepted and interpreted in 
step 4.1. For the modeling of a particular subcomponent some of the effectiveness 
measures may be unimportant and others important and requiring interpretation.

The information developed in prior and ongoing modeling of behavior is 
accepted in Step 4.2 and used in this modeling of structure.The behavior information 
may describe the intrinsic behavior of an object as dictated by reality. It may be useful 
to transform this behavior as the structure modeling proceeds. 

All of the applicable available information is accepted and used in Step 4.3. 
Often this includes text requirements and an operations concept which describe what 
the particular subcomponent must do. The available information may include adjudi-
cated constraints that have been resolved with the originator of the requirements. The 
adjudicated constraints dictates or limit the choice of which objects to use.

The second set of three concurrent steps in Figure 15., FFBD View of Core Step 
4, build the structures needed at this stage of the engineering. 
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Step 4.4 selects the objects that will be used from what is available in house, 
from supplier offerings, and from catalogues or libraries of parts. Usually there are 
several different sets of objects that might be used with different advantages for the 
different sets. To consider all of the possibilities is very expensive in engineering 
resources. The alternatives are efficiently pruned to a moderate number by consider-
ing the Effectiveness Measures. When lowest possible cost is an Effectiveness Mea-
sure, for example, many expensive object choices can be rejected with little analysis. 
Several structure alternatives may need to be carried forward to Trade-off Analysis. 
The choices under consideration can be expressed directly in the modeling using 
Classification to define the potential alternatives. This ability is very useful for later 
reuse of components and for very high levels of process automation with tools.

Step 4.5 of defines the attributes of the objects. 

Steps 4.4 and 4.5 are not sequential. Defining the attributes will involve think-
ing about a number of objects and about the Effectiveness Measures.   For example, 
in the development of a satellite, designing to minimum weight is an important effec-
tiveness measure. Yet the physical weight of a custom high speed integrated circuit 
chip may be unimportant. However, the power consumption of the kinds of chips 
used may be very important to satellite weight because of the impact on power stor-
age, solar energy arrays and heat dissipation. The pertinent attributes are derived from 
the Effectiveness Measures and from the Non-temporal Performance Requirements 
many of which are expressed as equations with arguments. The attributes are the 
arguments of those equations. An attribute which does not affect effectiveness or per-
formance is not needed. Every attribute that affects performance or effectiveness 
must be included for relevant objects.

Step 4.6 allocates functions (called methods in object-oriented software) to the 
objects. Often for physical objects the assignment of functions to objects is obvious 
and inflexible. A garbage disposal in the design of the kitchen is there to grind up gar-
bage. However, some physical objects and especially people and computers are 
extremely flexible in what they can do. This does require that the people be trained 
and that the computers consist of both the hardware and software required for opera-
tion. Step 4.6 is concurrent with step 4.4 which identifies objects. 

The behavior desired and the corresponding functions may be known before the 
objects are selected. The process of encapsulating functions in the objects often leads 
to discoveries that change the objects being used. Some of the most valuable of these 
discoveries occur during context analysis. They unexpectedly map behavior and 
objects out of the system and into the environment or move some object and its 
behavior from the environment into the system. They can result in major shifts in 
product performance and competitiveness. As the functions are assigned to the 
objects, interconnections among objects will be established.
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When all three steps have been completed, the result is a set of alternative struc-
tures with an embedded and executable design behavior. The design behavior may be 
a transformation of the intrinsic behavior. 

Step 4.7 is the execution of the structure of the designs, manually by engineers or 
automatically with a tool. It validates the design behavior. The execution will find 
problems such as deadlock or race conditions. It is at this point that time budgets can 
be assigned to each function with assurance that the time estimates are consistent with 
the properties of the object. The execution will generate an overall time line for the 
designs. If this style of modeling has been carried out consistently during the develop-
ment of the tree of parts that constitute the system, the time line for a subcomponent 
can be studied for its impact on an overall response thread of the system to an external 
excitation. In many developments there is no deterministic time of completion for the 
functions, but probabilities of completion can be estimated for them. In such a case it 
is often possible to execute the behavior as a monte carlo calculation to generate a 
probability for overall success. 

Step 4.8 uses the execution of behavior to evaluate the system interfaces both 
external and internal.This establishes the consistency of design with interface require-
ments. It is particularly useful in situations in which the magnitude of input/output is 
known and the rate of generation and consumption is known for functions. In these sit-
uations the flow at interfaces can be established once the design behavior has been 
demonstrated to be error free in step 4.7. Wait times due to lack of input are estab-
lished. Accumulation of output and storage of input are determined and can be corre-
lated with the amount of storage capacity available or required.

The final step, 4.9, generates all the structure information needed for the engi-
neering information base in the form required. 

8.3 Example of Structure Development - Bottling Wine

Substantial information about the Bottling Wine System has been developed in Chap-
ters 6 and 7 and in the exercises. The Effectiveness Measures, Requirements, Context, 
and Behavior have been described. 

8.3.1 Requirements Review

Effectiveness Measures
1. Bottle wine at minimum cost.

2. Complete the bottling as quickly as possible.

3. Ensure there is no foreign matter in the bottles of wine.

4. Bottle only good wine.
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Non-temporal Performance Requirements
1. Number of bottles to be produced

2. The system shall produce bottles of wine at a rate up to 100 bottles of wine per 
day. 

3. Material cost per bottle $1.00 or less

4. Labor cost per bottle $1.00 or less

5. Investment cost of $400.00 or less

8.3.2 The First Parts Selection, Define Objects
The top level selection among things to use for the Wine Bottling System is the 
choice between a manual system and a fully automated system as shown in Figure 
16., Top Level Selection among Objects.

 Such a selection can be made only if the properties, attributes, of the objects are 
known, Step 4.5, and can be compared with requirements. When the attributes are 
closely related to one or more of the requirements and when the differences make the 
choice clear (this case) then the choice can be made in Core Step 4. This efficiently 
prunes the total amount of engineering work to be done. Often, however, there are 
hundreds of parts involved and the relationships between requirements and attribute 
values are complex. In this case a full trade-off needs to be made, Core Step 5, to be 
described in the next chapter.

Bottling System

Investment Cost
Bottling Rate
Material Cost

Bottle Wine

Operating Cost

Smallest Automated

Investment Cost $300k
Bottling Rate 3000 /day
Material Cost

Bottle Wine
Operating Cost

Bottling System
Manual

Investment Cost $400
Bottling Rate 100 /day
Material Cost

Bottle Wine
Operating Cost

Bottling System

Figure 16.   Top Level Selection among Objects
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It is non-temporal requirement 3. above that is compared to the properties of a 
manual versus automated system. The need is for only 100 bottles per day which can 
be met with the manual system. The investment required for the manual system is sub-
stantially less, so it is chosen. Information about the smallest automated system comes 
from suppliers of such systems. Other intermediate situations can exist, such as a 
requirement for bottling 1500 or 700 bottles per day, which require more detailed 
engineering analysis.

8.3.3 The First Parts List or Aggregation
It is necessary to determine all of the parts that will make up the Manual Wine Bot-
tling System. Often many of these objects have been identified or considered during 
the ongoing development of behavior, and those results can add to the efficiency and 
completeness of this step. Figure 17., First Parts List for Manual Wine Bottling Sys-
tem shows such a list.

 

Although better alternatives may be found, this list is adequate for this example. 
Investment cost is budgeted at $400. The parts in Figure 17., First Parts List for Man-
ual Wine Bottling System, are:

• One or more people, an appropriate number requires further analysis

• A Dedicated Kitchen which is assumed to be available at no additional cost

Figure 17.   First Parts List for Manual Wine Bottling System 
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• Bottle wash equipment

• One or more Wash Injector that force hot water and low suds detergent into 
bottle

• One or more Powered Brush to scrub the bottle
• One or more Rinse Injector to force rinse water into bottle

• One or more manual Cork Inserter to force cork into bottle

• One or more Label Moistener to wet the label, a damp sponge on a dish

• One or more Labeling Fixture to hold bottle and help position Label

• One or more Wine Injector to pressurize the wine barrel and force wine into 
bottle

It is necessary to budget the investment cost to the parts in the figure as design 
targets, to find actual investment costs for them, and to sum the actual costs for com-
parison with the investment requirement. This calculation cannot be performed until 
the number of parts is found by trying different alternatives.

8.3.4 Allocate Functions
To find the number of parts to use, we allocate the wine bottling functions to different 
numbers of people. The FFBD view of intrinsic behavior of the Wine Bottling System 
is repeated from Chapter 7. in Figure 18., Modified Functional Flow Block Diagram, 
Bottling Wine for use in this analysis.

Time estimates are needed for one person to do each of the tasks in the figure. 
These times can be summed to see if the desired bottling rate of 100 bottles per day 
can be met.

And Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle
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Bottle

OK

not OK & bottle

Get Wine
Bottles

Get Clean
Materials

Get
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not OK &
bottle washed < 3 times

washed 3 times 

Figure 18.   Modified Functional Flow Block Diagram, Bottling Wine
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The best values for times or for attributes of objects are obtained by measure-
ment of the activity or object. When this is not possible, simulation gives the next best 
values. When that is not possible estimates are made based on related experience. 
Actual measurements should be made as early as possible in the development cycle to 
confirm budgets and estimates. Note that all of the times above would be different if 
automated equipment were to be used.

Time Estimates for a Manual Bottling System
• Get wine barrel and prepare it - 30 min

• Get Wine Bottles - 30 minutes

• Get Cleaning Materials - 10 minutes

• Get Corks - 5 minutes

• Get Labels - 5 minutes

• Clean Bottle - 3 minute (filling with wash solution, brushing, and rinsing)

• Look at Bottle - 1/4 minute

• Fill Bottle - 1 minute

• Cork Bottle - 0.5minutes

• Label bottle - 0.5 minute

Case 1. Allocation to One Person
If the functions in Figure 18., Modified Functional Flow Block Diagram, Bottling 
Wine, are allocated to one person, then the five concurrent tasks that comprise Gather 
Materials must be serialized and there are five factorial ways to do this all of which 
take the same total time. The choice among these alternatives is not important to the 
system concerns except for one important consideration.

Adding up the time estimates above for serialized tasks, Gather Supplies will 
take 1 hour and 20 minutes. What else does the person have to do in an eight hour 
day? Eat lunch, 30 minutes. Two work breaks of 10 minutes each. Clean up the 
kitchen at the end of the day of work. Note that these times were not included in the 
intrinsic behavior, and for a good reason. They are specific to people doing the work 
and are not required by an automated system. For this design solution they must be 
considered because they impact the work accomplished and the operating cost. 

This is an example of discovery during the creation of structure that impacts cre-
ation of behavior. The time for clean up at the end of the day is estimated at 30 min-
utes. Gathering supplies, lunch, two breaks and clean up take 2 hours and 40 minutes, 
leaving 5 hours and 20 minutes for bottling wine. Cleaning, filling, corking, and label-
ing one bottle takes 5.25 minutes. One person must perform this in series. One person 
can produce only 61 bottles per day. This design is rejected as being not feasible.
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Case 2. Allocation to Three People
If the tasks for bottling wine are allocated to three people, there are a number of ways 
to make the assignment, one of which is shown in Figure 19., Allocation to Three 
People.

 

The design also captures decisions as to how many pieces of equipment are made 
available.

Figure 19.   Allocation to Three People 
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Because we have the Intrinsic Behavior and time budgets or estimates for each 
step, we can manually execute the behavior for this assignment. This execution can be 
done automatically with an appropriate design capture tool. The top level task Gather 
Materials is done by the three people in parallel.

• Person #1 takes 30 minutes to get wine

• Person #2 takes 30 minutes to get the bottles

• Person # 3 takes 20 minutes to get the corks and labels

• The elapsed time for the task is 30 minutes

Clean up at the end of the day is shared by all three so that it takes 10 minutes. They 
take two 10 minute breaks and a 30 minute lunch at the same time. These activities 
take 90 minutes and leave 6 hours and 30 minutes for bottling wine. Cleaning and 
looking at the bottles is now done by two people at the same time so that the time per 
bottle is reduced from 3.25 minutes to 1.63 minutes. Filling, corking, and labeling the 
bottles takes 2 minutes so that the total time per bottle is 3.63 minutes. The three peo-
ple can bottle 107 bottles per day on this basis using only one set of equipment. This 
means that several pieces of Bottle Wash Equipment must be shared by two people. 
Further modeling will show that this is readily done if they synchronize their activi-
ties. Such synchronized parallel resources are frequent solutions to system problems. 
An explicit model of this transformation of behavior is left as an exercise.

The Simplest Allocation, Case 3
A major problem in Case 2 is that one of the persons must periodically wait for others 
to complete their tasks. This shows up directly in automatically generated time lines as 
wait periods. There are simpler and better feasible solutions than Case 2. If only two 
people are applied and each person does all of the functions on the same equipment 
the throughput is better than the two previous cases. This solution is left as an exer-
cise.

Allocation in the Context of the Problem, Case 4
Very often the most important alternative allocations of functions to objects is done in 
the context of the problem. The critical question is: are there any functions that have 
been assigned to the Wine Bottling System that could be better done by one of the 
External Systems in the context. Sometimes imposed constraints prevent such alloca-
tion changes. In every case it is valuable to think creatively about the issue.

Cleaning the bottles takes appreciable time because they must be soaped, 
scrubbed and rinsed. Some may not be clean after one cleaning. If clean bottles are 
obtained from Bottling Supplies the cleaning step can be totally eliminated. The bot-
tles need to be stored to stay clean with a provision to return to the supplier any that do 
not pass an inspection for cleanliness. In this case one person can produce about 160 
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bottles per day, two people 375 bottles, and three people 584 bottles. The cost of pur-
chasing clean bottles and of keeping them clean in storage, as well as the storage 
itself, should be considered.

8.3.5 Interfaces Among People
Where interfaces occur and what happens at the interfaces depends upon how the 
functions are allocated among the objects.

In Case. 1 there are no interfaces among people. In Cases 3. and 4. the people do 
not interact directly, but their activities must be synchronized because they share the 
same equipment for performing the bottling. When tasks are performed by people, 
they can be trained to synchronize their work using visual and voice cues. This is not 
the case for computers and machines which require a resource with its own behavior 
to ensure synchronization. The synchronization can be based on broadcast timing as 
in the case of a coxswain calling the stroke for a crew team. It can be based on succes-
sive release of shared facilities as in this example. It can be based on quickly servic-
ing demand as the demand occurs as in the case of several elevators serving the 
occupants of a building. 

In Case 2. there is a synchronization between two of the people and an interface 
between each of them and the third person who is filling, corking, and labeling bot-
tles.

8.4 Information Model for Structure

The information model for structure is very similar to the information model for 
behavior illustrated in Chapter 7. The decomposition of Behavior into Input/Output 
and Function ordered by Control Operations has been deleted to simplify a complex 
diagram. Two structure items have been added: Attributes which are a part of every 
object description and Component Interfaces which exist whenever objects are built 
from other objects. Both information models capture associations with context and 
with text requirements. In Figure 20., Information Model for Text Requirements, 
Structure, and Context, the added structure items are shown shaded dark for ease of 
finding them in the diagram.
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The information item Component has been moved to the middle right side of the 
Figure. Component remains one of the roles which any object may take. A Subject 
System is built from two or more Components. Each Component may in turn be 
assembled from two or more Components. Behavior is allocated to the Components 
and shown in the example in this chapter. The Functional Requirements are associ-
ated with the Components because Functions have been allocated to the Components 
and the Functions trace to the Functional Requirements. For any component one can 
look up the Functions it encapsulates. One can trace from these Functions to the 
Functional Requirements they satisfy. One of the strong features of the modeling 
described here is that it enables one to reallocate Functions among Components and 
automatically maintain the traceability.

Temporal Performance Requirements budget to the Functions encapsulated in 
the Components. These budgets must be reexamined whenever the allocation to 
Components is altered because different things have different capabilities in their 
speed of executing the same Function. The Components have Attributes and the Non-
temporal Performance Requirements like cost, weight, reliability, power consump-
tion, memory size, etc. budget to the Attributes in accord with an appropriate aggre-
gation equation.

When Design is found in the Text Requirements, an Issue is raised with the orig-
inator of the Design and a Resolution is reached. One of the possible outcomes of that 
resolution is an Adjudicated Constraint which predetermines what components shall 
be used. Another outcome of the Resolution is that the Design was inappropriate and 
is re-expressed as a Text Requirement. In that case the Resolution traces to Text 
Requirement.

8.5 Architecture and Design

The descriptions above show a repeated process for development of design or archi-
tecture, but do not indicate the conditions, circumstances, for developing architecture 
versus design. System designs produce a near optimal solution for a particular system 
problem. Architectures produce a set of rules or constraints that limit design choices 
but lead to near optimal designs for a whole family of system problems. Architectures 
define the invariant properties across a family of products; the aspects of design 
which will be the same for all member of the family. If one is building a grade school 
or a home for the elderly, specific and detailed designs (blueprints) are required for 
each building. Because both types of buildings need to provide safety and fast access 
to the outdoors in an emergency like a fire, they may both be built to an architecture 
that dictates one floor construction with access to the outdoors from every classroom 
or patient room. Architectures provide constraints to structure and behavior that are 
near optimal for a whole class of problems. Architectures deal with the relationships 
among classes of things and classes of behavior. Mainframe computers and client-
server computer systems are two architectures for computer systems.
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The same core technical systems engineering technical process is applied to 
model the many stages of complex system design or system architecture. What 
changes in developing architecture rather than design is not the process but what the 
process is applied to, (Oliver 1995)

Application of the core process in this fashion produces the requirements and 
designs for the parts tree for the system. The core process generates the parts tree, the 
interconnection information, behaviors (functional requirements), performance 
requirements, the response information needed for test and validation and a build plan 
for each node of the parts tree. The things, components, objects in the parts tree would 
be described as object instances by a software engineer. They are particular things 
selected because their property (attribute) values and their behaviors result in a near 
optimal design solution as established by trade-off.

It is important to realize that the design space is very large, and that finding a 
near optimal solution is complex. The algorithmic complexity of the problem has been 
shown to be NP-Complete, (Chapman and Rosenblit 1995). This means that there is 
no known efficient algorithm for finding an optimal solution. As the problem size 
increases, the number of steps needed and the time required to solve the problem algo-
rithmically may increase exponentially.

Engineers solve such complex problems by restricting the components or objects 
to be considered to a limited set which are either available from suppliers or which can 
be designed and built at acceptable cost and risk. They further simplify the problem by 
restricting the manner in which the components or objects behave and are intercon-
nected. The description of these behavioral and structural restrictions is what we call 
an architecture. Architectures describe the kinds of components or objects to be used 
and how the kinds of components or objects are interconnected.

Applied to Generates

Business using product      
(concept analysis)

Business design & value of 
product segments

Product
(system analysis & design)

Product design & sub-
system requirements

Subsystems
(subsystem analysis & 
design)

Subsystem design, sub-
subsystem requirements

Table 3: Application of Core Process for Design
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Note the words “kind of” in the last sentence. An architecture may typically call 
for interconnection by bus structures or by point-to-point wiring. There are many 
instances of busses and of point-to-point wiring. The word “bus” as used here is a 
class name. It is a generalization of more specific bus classes such as PCI-bus or 
VME-bus. Architectures can usefully be described with classes and class relation-
ships. Designs become particularizations of the architecture.

Table 3 on page 196 describes design, but does not illuminate how architectures 
are developed. Both architectures and reusable components or object classes are the 
result of Domain Analysis, (Oliver 1995). What differs between design development 
and architecture development is what the core process is applied to. 

Domain analysis is the process of analyzing the application of a product to a 
collection of businesses. It establishes the value of the product and its major segments 
to the businesses. It results in a modification of the businesses, a new architecture for 
them with the product in place. It establishes that all of the product is valuable to the 
businesses or that particular segments of the product are of benefit to them all. If only 
particular segments of the product are of value across the businesses, it will be impor-
tant to make the major product subsystems match the valuable product segments. One 
can then produce and deliver to each business the product segments of value to that 
business at minimum production cost. The structure of a good architectures is driven 
from an analysis of value to a collection of businesses or buyers.

Examples of this are both common and plentiful. If one wants to buy a car 
(class) and has selected a particular brand and model (subclass of car) one can still 
select a six cylinder engine (subclass of engine) from the available kinds of engine 
(class)   depending upon the performance or the economy that is desired by a user. A 
good architecture for automobiles gives the buyers choice in automobile performance 
and operating cost because that choice has value to the buyer for the buyer’s use or 
business. Though this use of “class” and “instance” may appear to be a trivial renam-
ing of common ideas, it is not trivial but rather an important distinction between the 
concepts of class and instance, and aggregation and classification which are blurred 

Applied to Generates

Collection of businesses 
using product or product 
segments
(domain analysis)

Business designs & com-
mon product or product 
segments of high value 
across businesses or time

Common products or seg-
ments (architecture analy-
sis & design)

Common product architec-
ture and reusable products 
or segments/ components

Table 4: Application of Core Process for Architecture
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or absent in much engineering work. By using these concepts and abstractions rigor-
ously, both the system models and the descriptions of the system engineering process 
can be made rigorous. If rigorous, they can be automated and executed by computer. If 
rigorous, then information can be transmitted by systems engineers to the other engi-
neering disciplines without error and ambiguity.

8.6 Architecture, Applications, Effectiveness Measures and Reuse

When architectures are evolved from market experience or developed from effective 
domain analysis, they endure for an appreciable time. Over time the architectures will 
change. Many businesses have remained locked to a formerly effective architecture 
and have suffered severe business contraction by not moving to appropriate new archi-
tectures in their product as rapidly as competition. In the computer world main frames, 
multi-tasking operating systems, mini computers, and client server systems serve as 
examples. It is useful to list major factors that drive architecture and its change:

1. The general behavior required by a domain of application

2. The effectiveness measures

3. The kinds of objects available for the application domain; the available classes 
for architecture. 

Pyle, et. al., (Pyle et al. 1993) have developed a useful taxonomy for real time sys-
tems that classifies applications according to the general behaviors that are required. 
Five primary features with binary values define 32 primary classes of applications.

The effectiveness measures drive the architecture solution. If availability is a 
high priority effectiveness measure, and if the hardware components have individual 
failure rates too high to meet the availability, then a redundant architecture with soft-
ware to detect failure and provide recovery will be necessary. This effectiveness mea-
sure will have to be prioritized against others like cost and weight. 

The effectiveness measures also change over time. In early phases of the intro-
duction of medical X-ray Computerized Tomography imaging equipment, the product 
architecture was driven by performance (image quality and dose to patient), through-
put, and field service. Hospitals with such a machine were at state-of-the-art. As CT 
machines became standard equipment in hospitals, architectures meeting acceptable 
performance and low cost became important. In latter phases of the market where 
sales were saturating, field service and availability dominate and automated remote 
machine diagnostics impacts the architecture.

Over time there are major changes in the available components from which to 
synthesize systems. In the case of X-Ray CT systems these changes overlapped the 
changes in effectiveness measures. Computer hardware shifted from mini-computers 
to micro-computers. New bus options became available and software could be distrib-
uted.
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Application of the systems engineering technical process provides for modeling 
of all of these factors and trade-off among the options.

8.6.1 Design Simplification with Architecture
Design work is made efficient by using the architectural models and a limited set of 
component choices to prune the design solution space, to shorten the design process, 
and to produce similar and consistent designs over several product developments and 
releases. For a feasible design all of the requirements must be met in addition to the 
effectiveness measures. For a near optimal design the specific objects chosen to 
include in the design must result in near optimal values for the effectiveness mea-
sures.

The critically important factors for developing the design are:

1. The architecture to be used

2. The specific emergent behavior required by the specific application.

3. The effectiveness measures for the specific application at a particular time in 
the market evolution

4. The kinds of objects available for the specific application; the available classes 
for design. They are limited by the state of technology and change over time 
with technical advancement.

8.7 Summary

The process for creating structure models has been described as a behavior and illus-
trated with an example. It proceeds concurrently with the definition of effectiveness 
measures and the creation of behavior models. Alternative mappings of the desired 
emergent behavior onto alternative sets of components generates alternative designs 
and architectures. 

The number of possible designs and architectures, the solution space, is very 
large. The general problem is NP complete. For efficient engineering it is important 
to prune down the number of choices to be considered without loosing the best alter-
natives. Effectiveness measures help guide this pruning during the work. The applica-
tion of established architectures prunes the work.

Architectures are developed with the same technical systems engineering pro-
cess that applies to design. In developing architecture the process is applied to a 
domain - to a collection of businesses and the product and product segments that have 
value across the businesses. The same process is used to create designs, but it is 
applied to a specific application - a specific business and the product that has value to 
that business.
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The three concurrent Core Steps: Define Effectiveness Measures, Create Behav-
ior Model, and Create Structure Model together result in design or architecture alter-
natives. Quantitative trade-off is used to select among these alternatives. Trade-off is 
the subject of the next chapter.

8.8 Exercise

1. Work through Case 3., from Section 8.3.4, Allocate Functions on page 189. Is it as 
productive as the use of three people as assigned in Case 2?

2. Consider the rewashing of bottles that are not clean after the first pass. Create 
appropriate attributes for the object bottle. How many attributes are needed? 
Assume a set of numbers for the attributes and estimate the impact on productivity 
of rewashing bottles. Estimate the cost of rewashing versus the savings in bottles.

3. Create a design behavior for Case 2. Allocation to Three People. Include the syn-
chronization of the two people cleaning and inspecting bottles. Draw a time line for 
each of the persons.

4. Modify Figure 7-2., Context Diagram for Bottling Wine on page 161 and Figure 
17., First Parts List for Manual Wine Bottling System on page 188 to define Case 4. 
which allocates cleaning the bottles into the External Systems the Context.

5. Develop a structure model for a system for baking cookies. Use a recipe from a 
cookbook as the behavior model.

a. decide what the boundaries (context) of the system will be.

b. develop objects for the system

c. allocate the behavior to the objects

d. develop attributes for the objects

6. Consider a caveperson throwing rocks to kill an animal and a missile defense sys-
tem. Develop a structure description to represent both of these systems.

7. Describe the relationship of functional requirements to behavior. See Figure 20., 
Information Model for Text Requirements, Structure, and Context on page 194.

8. Give three examples of product lines that have experienced stable architectures for 
10 or more years.

9. Give three examples of businesses that failed because they did not adapt their archi-
tectures.
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Perform Trade-Off Analysis
9.1 What Core Step 5 Is

 Core Step 5 is the work done by engineers to choose among the alternative designs or 
architectures that emerge from the three preceding modeling steps. It is the effort that 
establishes that a design meets both the functional and performance requirements and 
is feasible. It is the work that selects from among the several possible feasible designs 
or architectures the one most nearly optimal for the marketplace.

The output from trade-off is the selected design or architecture that will be 
implemented. Architecture and design exist at every tier of the system parts tree. A 
useful high value product can impact and alter the architecture and design of the busi-
ness that incorporates it. An architecture and design also exist for the system, its sub-
systems, sub-sub-systems, etc. The architectures and designs for different parts may 
be radically different. The choices among designs and architectures for each part of 
the system are based on the impact of that part on the system performance and effec-
tiveness, not on part performance and effectiveness. Values for the important 
attributes of the parts must be known to calculate impact of the part upon the system. 
This chapter focuses on several aspects of trade-off:

• A Behavior Model for the process of Core Step 5

• Complete identification and specification of attributes of objects

• Performance calculated from the attributes of objects or obtained from survey

• Physical measurement, simulation, and estimation to get attribute values

• Calculation of performance of each alternative

• Calculation of effectiveness for each alternative

• The trade-off decision

• An information model for trade-off

• A discussion of tools and automation of the process
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9.2 Trade-off

The FFBD that refines Step 5, Perform Trade-off Analysis, is shown in Figure 9-1., 
FFBD View of Core Step 5. The inputs to this step from earlier steps have been 
described. They provide a complete executable description of the design or architec-
ture alternatives. They define all of the performance requirements and effectiveness 
measures, the defining equations, and the attributes needed to evaluate the equations. 
What is missing are the values of the attributes. Both the values of the attributes and 
the variances in the values are needed. Information is accepted in steps 5.1 through 
5.3. In step 5.4, one or more of the alternatives is selected and then evaluated in steps 
5.5 through 5.11.

.

9.2.1 Values of Attributes
The values of the attributes are obtained by measurement, physical simulation, and 
estimation. As a project evolves, the level of detail increases, and hardware and soft-
ware are produced, it is possible to improve accuracy by replacing estimates with sim-
ulation, and simulation with measurement. 
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Measurement.
 The best values of attributes for calculation of system performance and effectiveness 
are obtained by measurement of the attributes on components produced under pro-
duction conditions with production tooling. Modern systems have been built on 
aggressive schedules with 80% of the hardware built in this manner and tested as 
components prior to first assembly and test, (Reugg, Field, and Boldblatt 1993). Mea-
surements on prototypes or brass boards are somewhat less reliable because of the 
influence of actual production conditions.

Simulation. 
When parts are not available for measurement or when the measurement process is 
expensive or time consuming, attribute values can be calculated by simulation. The 
results are only valid if the simulation technique has been verified to be accurate by 
comparison of simulation results with actual measurements. In some cases the simu-
lations are not sufficiently accurate for absolute values of attributes, but can be used 
effectively to interpolate between more expensive measurements.

The simulations used in Step 5.6 for these purposes are based on the equations 
of physics, chemistry, biology, materials science, communications engineering, com-
puter science, etc. They very often use numerical techniques to account for complex 
boundary conditions. They simulate the physical and logical reality of the compo-
nents. They are not the executions of behavior models discussed earlier. 

Estimation. 
When neither measurement nor simulation is possible one resorts to estimation. The 
need for estimation declines as work progresses. The very best available engineering 
experience needs to be used for estimation. People are generally consistent in their 
estimates. However, some people habitually estimate high, some on target, and some 
low. It is important to track the sources of the estimates and compare them to histori-
cal data. Multiple estimates for the same attribute are developed with survey tech-
niques.

The values for attributes improve as the development proceeds. Pre-production 
prototypes are often hand assembled by very knowledgeable craftsmen. Parts may 
have been hand tooled and adapted to fit the evolving design without all of the infor-
mation incorporated in the system design models. For software, alpha test quality 
often does not include all of the rigorous features of production software. Portions 
may be stubbed out and vital areas such as error recovery may be incomplete. Any of 
these conditions can affect the results of measurements on components and the sys-
tem. It is necessary, therefore, to compare current results with prior values used in 
trade-off analysis. If large discrepancies occur, they must be tracked down and 
explained. If the discrepancies persist, the prior trade-offs need to be re-examined.
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9.2.2 Survey
Some of the alternative components that are defined during the development of 
designs and architectures need to be selected based on the preferences of users, opera-
tors, or owners. The important criteria are appearance, feel, sound, ease of use, etc. 
This work is carried out in Step 5.8 Perform Effectiveness Measurement Survey. It is 
carried out for those components which are important to prioritized Effectiveness 
Measures and which are selected based on preference.

The development of complex systems often spans a number of years. There may 
be an appreciable passage of time between the early prioritizing of Effectiveness Mea-
sures in Core Step 2 and the definition of the major design and architecture alterna-
tives for trade-off. It is often desirable to repeat the prioritizing of Effectiveness 
Measures in Step 5.9 with a selected survey group which has been shown the alterna-
tive designs and architectures. Because these efforts determine acceptance in the mar-
ket place, it is important to both get them correct. It is also important to change them 
only occasionally to prevent excessive change in requirements during the develop-
ment. 

The techniques described in Chapter 6., like the Analytical Hierarchy Process, 
are used to perform the surveys of preference and priority to get quantitative and use-
ful results. 

9.2.3 Calculate System Performance
The earlier Core Steps, 2 Define Effectiveness Measures, 3 Create Behavior Model, 
and 4 Create Object Model have defined the performance equations and the attributes 
which are their arguments. As Attribute values are obtained, the performance is calcu-
lable for any of the candidate designs at any level of parts hierarchy. Feasibility of a 
candidate design is shown when its calculated performance meets or exceeds the sys-
tem level requirement. The calculation of system performance, Step 5.9, from the 
parts tree and the attributes of the components can be automated when the design is 
captured in executable models. 

9.2.4 Iterate
If no design meets the specified system performance, then one iterates. Alternatively 
one relaxes some of the requirements, or the project is abandoned as being infeasible.

9.2.5 Calculate System Effectiveness
System Effectiveness Measures are calculated in the same manner as is performance. 
These measures are calculated only for those candidate designs that are feasible, 
which meet performance requirements. Automated calculation using the parts tree, 
structure information where required, defined attributes, and defined equations pro-
vides a major savings in time and cost. 
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9.2.6 Other Alternatives
If any design and architecture alternatives have not been evaluated, the process 
returns to step 5.4.

9.2.7 Display System Effectiveness
Often there are from three to about ten effectiveness measures which depend on a 
number of attributes of hundreds or thousands of parts in complex and non-linear 
ways. There is the choice of examining the impact of the design alternatives on the set 
of effectiveness measures, or of combining the effectiveness measures into a single 
cost function with weighting factors. The advantage of the single cost function is that 
it provides a single number on which to base the selection of the design to be used. 
The advantage of examining the set of individual effectiveness measures and how 
they vary with alternatives is that one can see where the sharp maxima and minima 
occur and where the broader maxima and minima occur. It is sometimes prudent to 
select a somewhat less optimal design if maxima vary slowly with attributes so the 
tolerances required on the attributes to can be large.

There are a number of convenient ways to display the effectiveness measure 
results. If the alternatives are discrete, use component A or B or C, then a table, a bar 
graph or a spread sheet can capture much of the information, (Ghassemi, Conway, 
and Hines 1994). If the alternatives are continuous, like a weight or a physical dimen-
sion, then multi-dimensional graphs can be plotted using visualization tools. A vari-
ety of techniques are available to look at multivariate data. Three dimensions, color, 
shape, motion, and spatial positioning can all be used to represent different aspects of 
the data. 

Several quality methodologies like House of Quality and Quality Function 
Deployment (Clausing 1994) define views which capture this type of information.

9.2.8 Choose Alternative Structure
The choice of a design solution based on effectiveness often needs consensus among 
management, customers, and other stakeholders.

9.3 Information Model

Four objects, which are shaded in Figure 9-2., Information Model for Perform Trade-
off Analysis, were added to the earlier model (Figure 6-10., Information Model for 
Create Effectiveness Measures on page 151) to account for performance as well as 
effectiveness. These objects include Non-temporal Performance Requirements and 
the Non-temporal Performance Equations from which they are calculated. They 
include Temporal Performance Requirements and the Time Lines that are compared 
to them.
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Simulation, measurement, and estimation provide values for the attributes of the 
components. Non-temporal performance equations use the attribute values as argu-
ments of equations that calculate the performance of the system. The calculations rely 
on the parts tree and, in some cases like reliability or moment of inertia, on system 
structure. The calculated values are compared with the required values of performance 
at system level to establish feasibility of the system. 

The Temporal Performance Requirements are response times that must be met 
by the system. When the behavior and structure are captured in executable models, 
they can be executed by an execution engine to produce overall system time lines. The 
time lines are the response threads through the system based on the individual 
response times or response time probabilities for the components. The execution 
engine can be a computer tool or a team working manually. The manual work is time 
consuming and difficult to keep free of errors.
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 The many different physical simulations which must be performed to get 
attribute values for trade-off require many different sophisticated modeling tools - for 
stress, heat transfer, fluid flow, crack propagation, chemical reaction, communica-
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tions fidelity, logic evaluation and design, etc. Their inputs are related to the informa-
tion stored in the system modeling tools and they provide attribute values needed by 
the system modeling tools. In addition there are text generation and text requirement 
management tools. The present situation is described below.

9.4 The Problem of Tool Integration

Multiple tools exist for managing the Initial Information, for the Behavior and Struc-
ture Modeling, for roll up of attribute values to performance and effectiveness, and to 
perform the surveys. Powerful visualization tools exist to capture multi-dimensional 
trade-off results and to display them to management, users, and customers. There are 
tools for risk analysis and scheduling and for configuration management of all the 
information. There are many tools for physical simulation of components. Most of 
these tools have been developed independently and do not talk with one another. The 
integration of the tools into an environment is presently left to the engineering organi-
zation buying the tools. Integrating a large number of tools with tailored binary inter-
faces results in costly maintenance as the tools are independently revised by their 
vendors.

The problem is difficult because the same named piece of information is not 
used with the same meaning in different tools, the data structures are defined differ-
ently, the systems for managing data are different, and many tools provide no access to 
their stored data. It is a matter of engineering to reconcile the data structures and data 
management systems. More difficult is the lack of any accepted guide to the informa-
tion required to do systems engineering and specific unique meanings for each piece 
of information. It is a vision of this book that meta-process descriptions of systems 
engineering described in executable models can provide rigorously defined informa-
tion and become a basis for tool evolution into integrated environments. The meta-
process definitions must come from systems engineering professionals.

Similar steps have been taken in mechanical engineering and in digital engineer-
ing to make possible the integration of design tools and manufacturing tools. Feasibil-
ity of the tool integration has been demonstrated in these other fields after certain 
prerequisites have been met. 

9.4.1 Prerequisites for Tool Integration
There are a number of fruitful approaches and architectures, like CORBA, DCE, and 
PCTE, to implement tool integration (Epperson 1994). None of these approaches can 
succeed unless the work to be done is well defined so that functionality is consistent 
across the tools. None of these approaches can succeed unless the information items 
are treated with consistent meaning in all the tools. Prerequisites for automation of 
systems engineering with an integrated tool set are:

1. A well defined engineering process captured in executable models

2. A set of information models for each step in the process
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3. A rigorous implementation standard for exchange of data. Several exist 
(Epperson 1994).

Without this information, tool vendors automate particular methodologies 
which are incompatible with one another, make different semantic assumptions about 
entities given the same name, and have no available standard for creating interfaces 
among tools. With the information above the following is possible:

1. Comparison of the different systems engineering methodologies in use.

2. Automation of the meta-process so that the views and notations needed for dif-
ferent systems engineering methodologies can be generated and projected 
from an abstract model stored in the tool. Multiple views are consistent by 
generation from the data in an abstract model.

3. Generation of detailed requirements and specification in executable form in 
the views and notations of the downstream engineering disciplines.

4. Maintenance and enhancement of large systems by modifying requirements in 
models and regenerating the downstream details. This is much less costly than 
changing downstream detail directly, and it maintains system documentation 
throughout the maintenance and enhancement cycle. It eliminates future 
reverse engineering.

5. Integrated tool sets that span the systems engineering work.

6. Ability to search the architecture solution space or the design solution space 
semi-automatically by specifying search rules and evaluating effectiveness 
reports. This is the efficient way to develop new product releases based on 
product already in the market. It has been applied in other fields.

9.4.2 A Comparison with Mechanical Engineering Evolution
Mechanical engineering and some of the other engineering disciplines predate sys-
tems engineering and as a result have evolved farther. They have gone through stages 
of development, documentation and automation that systems engineering is just 
entering. It is instructive to look at analogies with these older disciplines as a means 
of understanding the stages through which systems engineering is likely to pass

Rigorous Capture of Details
 Mechanical engineering must capture the details and the tolerances of three dimen-
sional geometry; must describe parts accurately. English language alone is inade-
quate. For all but the simplest cases systems engineering must capture the needs of 
users and describe the behavior and structure of a system that will meet those needs. 
Natural language alone is inadequate to handle the detail. Mechanical Engineers 
accomplish this through the application of a drafting process that allow engineers to 
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define objects in three dimension using three orthogonal views. Any other rotated 
view can be derived from the three by mathematical and graphic techniques. The 
foundations were described in 1801 in La Geometrie Descriptive, by Gaspaard 
Monge. Systems engineering has not yet agreed on a rigorous definition of process, 
the information captured at each step, and a language for expressing systems work.

Automation
 Mechanical engineering began to be automated in the 1960’s and 70’s with the advent 
of mini-computers. Companies like Applicon, Gerber, and Computer Vision provided 
tools to capture geometry. But these tools could not talk with one another or with the 
many tools in manufacturing which must capture the design geometry and modify or 
transform it. The manufacturing tools create machine tool cutting paths, geometry for 
fixtures, allowances for part shrinkage during sintering, etc. 

The need for an integrated set of tools led to the formation of professional orga-
nizations dedicated to defining the semantics and information required for geometry 
definition and transformation. These efforts were stalled for many years until the defi-
nitions began to be written in computer executable form. The language chosen for this 
was EXPRESS; other languages could have been chosen. With the rigor of executibil-
ity it has been possible to create the STEP/PEDES standards and for vendors to 
develop tools which can be integrated into an environment. Major aircraft have now 
been designed by Boeing with automated geometry transfer, (Norris 1995). 

Systems engineering needs to provide detailed information to other engineering 
disciplines in their own languages and notations which are and will remain inconsis-
tent with one another and consistent with their own traditions. It must provide infor-
mation to the product stakeholders - operators, users, managers, marketing, customers, 
etc. in forms that they can understand. It is essential that there be rigor in the systems 
information and automated transformation to the tools of the other disciplines and 
product stakeholders. This will require rigorous process and information models for 
systems engineering to be followed by the development of integrated environments.

 Semi-automated Search of the System Design Space
 Both systems engineering and mechanical engineering share the need to find near 
optimal solutions to complex problems. Mechanical engineering often deals with 
complex part boundaries and must perform complex analyses that involve stress, tem-
perature distribution, materials properties, and part fatigue. The solution of such prob-
lems has traditionally required the iterative solution of the analysis using separate 
sophisticated finite element tools for each of the disciplines - thermal, stress, etc. In 
recent years it has been possible to integrate such tool sets into an environment. Asso-
ciated with the environment is a set of search tools combining analytical, rule based, 
and heuristic optimization techniques (Ashley 1992). An engineer prescribes the ini-
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tial part shape and boundary conditions. He prescribes rules for conducting a design 
space search and for modifying the part boundary based on search results. He then 
monitors the alternative part shapes and effectiveness factors like cost, weight, reli-
ability as produced by the analysis by the environment. The engineer does a maxi-
mum of thinking and exploration and a minimum of manual labor.

   

 The capture of system designs in executable models in an integrated tool set is 
a necessary prerequisite for any automated search capability. The use of COTS prod-
ucts, of reusable components and of new components with defined properties and 
behavior means that semi-automated generation of system design alternatives and 
their effectiveness is possible. The payoff in reduced cost of development and in time 
to market is large. Today this remains a research problem, a vision, which can only be 
approached by first achieving rigorous capture of details for the engineering process 
and for products, and by creating integrated tool environments.

9.5 Exercises

1. Develop a structure diagram for measurement. Include information describing how 
the measurement is taken.

2. Describe the relationship between effectiveness measure equations to cost func-

Project, # Parameters varied
Manual 

Time
Automated

Time

Aircraft Engine Preliminary Design, 100 
parameters

10 Weeks 1 week

Molecular structure design, 150 parame-
ters

1 week 1/2 day

Cooling Fan Design, 18 parameters var-
ied

8 weeks 1/2 day

DC Motor Design, 70 parameters 2 weeks 1/4 day

Power Supply Design, 35 parameters 3 weeks 10 hours

Nuclear Fuel Lattice Design, Solution 

space ~ 10 10
1 week 2 days

Aerodynamic and Mechanical Design of 
Turbine Blades, 700 parameters and 36 
different engineering codes (tools)

12 to 24 
months

2 to 4 
weeks

Table 5: Comparison of Manual and Automated Search for System Solution
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tions. See Figure 9-2., Information Model for Perform Trade-off Analysis on page 
209

3. Consider two tools used in design: the first a text editor and the second a diagram-
ming tool. What problems are used when the tools are used together.

4. Give an example of three or more tools which were designed to work together. 
What features enable them to work together?

5. Select a display technique which highlights the differences between Architectures 1 
and 2 in Table 6., Two Architectures.

6. Would the display used in question 5 work if there were hundreds of values for each 
architecture?

Architecture 1 Architecture 2

102 654 3 90 511 5

14 876 3 26 934 1

44 521 2 56 634 1

8 783 1 20 945 1

65 981 5 53 546 4

80 501 3 68 782 3

21 619 4 33 682 3

11 789 3 24 833 2

38 838 1 50 934 4

weight speed size weight speed size

Table 6: Two Architectures
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Create Build and Test Plan
10.1 What Core Step 6 Is

Core Step 6 is the creation of a plan for how the subject system shall be built. It takes 
into account realities of time to market and needed competitive features, available 
resource for implementation, technical risk, time risk, schedule risk, procurement 
times, subcontracting, the involvement of partners, test and validation. The plan is 
based on the engineering information that describes the chosen design or architecture 
emerging from core step 5, Perform Trade-off Analysis. A detailed description of sys-
tems engineering planning with useful examples and lists has been published, (Blan-
chard and Fabrycky 1990) 

The development of the plan includes both management and technical issues. It 
must schedule the work such that results are obtained when needed and resource is 
applied when needed, management issues. The results scheduled are outputs of the 
technical work which require technical knowledge both for their identification and 
for realistic estimates of effort for their development, technical issues. Both manage-
ment and engineering need to contribute to Core Step 6. It is a step in the core techni-
cal process because it paced by and requires the outputs from the preceding core 
steps. Development of the next tier of the system needs to proceed with the manage-
ment and technical information from the build and test plan from the tier above.

The build and test plan is developed for the subject of interest at each tier of 
development. The engineering team may be working at the context tier where the 
subject of interest is the business using the product. They may be working at system 
tier where the subject of interest is the product. They may be working at the sub-sys-
tem tier where the subjects of interest are the major segments of the product. A build 
and test plan is created at each tier.

At each tier there are time-to-market issues and risk issues. At each tier there 
may be a discovery of a needed capability not within the scope or competence of the 
organization or of an unanticipated business opportunity that requires the cooperation 
of another business. At each tier there may be a discovery of items which need to be 
procured or developed by a subcontractor. As the program moves through the devel-
opment phases, the build and test plan is refined to encompass the increasing amounts 
of detail needed for the increasing number of subsystems and components.
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There are test issues at each tier which are fully resolved up front by the model-
ing of the core technical process. The models produced by the core technical steps 
produce the excitation scenarios and product response threads that are needed for val-
idation and test. At the context tier the modeling specifies the test excitations and 
product responses that will validate that the product works in the business. At the sys-
tem tier the modeling specifies the excitations and responses that must be met by the 
product segments. When modeling is applied to the development, both validation and 
test begin at the beginning of the effort and are integral with the system development. 
This relationship makes it straightforward to include design-for-test into the develop-
ment and to create a regression test suite for use at each tier of development. The build 
and test plan shows the schedule for builds and for testing. It shows the interconnec-
tion between the engineering that creates behavior and structure models, and the 
actual incorporation of the behavior information into a test suite.

The schedule for builds may be based on several different considerations. The 
plan may schedule building the smallest components, and then combining them into 
larger and larger assemblies until the system is complete and validated. For very large 
systems with long development times, the schedule may call for partial builds of many 
components and subsystems so that portions of the system may be assembled, vali-
dated early for particular response threads, and even applied in the field by selected 
users to try out critically important system features. These choices are driven by busi-
ness realities. They may result in incremental release of functionality to the market-
place, a multi-generational product plan.

Early builds of particular components can be executed for early assessment, or to 
reduce risks. This is a form of prototyping controlled by a defined process and path.

10.2 Creating a Plan

The creation of a plan involves the specification of a set of tasks, the ordering of the 
tasks, the inputs/outputs for each task, a selection among existing resources to do the 
work, assignment of tasks to resources, and time and performance conditions to be 
met (especially cost). This is the problem of creating a system. The problem of creat-
ing a plan is the same as for any other system: product development, process develop-
ment, or business re-engineering. (Wymore 1993). It has the same complexity, NP-
Complete, as other system developments (Chapman and Rosenblit 1995). Automate 
computation of the optimal plan is limited by this complexity. Heuristics and human 
guidance must often be used to develop a sound plan.

Simple plans for small projects often involve only modest resource constraints, 
few or no alternative paths, and a need for completion within a specified reasonable 
time. Such plans can be developed readily with software that displays the critical path 
through the plan, slack times for the resources, and resource utilization.
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The plans for large complex systems involve multiple constraints, time limits 
that are difficult to meet, severe resource limits, and a complex set of alternative paths 
needed for mitigation of identified risks. Such plans require considerable iteration 
and effort to find an acceptable solution. They can be developed with the available 
planning tools mentioned above with some difficulty and iteration or with the core 
technical process and systems engineering tools. Systems engineering tools have not 
traditionally provided support for scheduling. They are likely to lack automated 
response to queries like “what is the critical path”.

The development of such complex plans is eased when they are produced itera-
tively as described here. High level schedules and decisions are made as early as pos-
sible. These are refined and adjusted as more technical detail about the system is 
developed. This practical approach is often heuristic, using tools and algorithmic 
techniques as an aid.

10.2.1 Network Scheduling Approaches
Network approaches to planning consider the project plan to be an ordered set of 
independent tasks which may be represented as a network. The ordering operations 
include the precedence of tasks, concurrency of tasks when several follow a proceed-
ing task, and iteration. Any set of successive tasks through the plan is considered to 
be a path (corresponds to a response thread). Time estimates for the tasks are associ-
ated with each task. The time for all paths is computed and the path with the longest 
time is noted. It is the critical path.   The critical path limits when the project will be 
completed. A reverse computation is then performed for all other paths, and the slack 
time is found for each task. Resource utilization is shown.

These approaches and the supporting tools may or may not include provision for 
representing alternative branching in the network in addition to and distinct from con-
currency. Such alternatives are vital when risk and its remediation are considered. For 
risk remediation an alternative set of tasks is defined that begin a new direction for 
work if a high risk part of the development does not show sufficient progress within a 
prescribed time or resource expenditure.

Program Evaluation and Review Technique (PERT)
PERT is one of the algorithmic techniques which treats the plan like a network. It 
incorporates uncertainty in the time estimates into the analysis. This is done by 
assigning optimistic, likely, and pessimistic times in the estimates for completion of 
each task. Mean and standard deviation are estimated for completion of the project 
and for each task. Slack times are computed. Algorithmic solutions and tools to sup-
port them exist for PERT.
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Critical Path Method (CPM)
CPM deals with issues of finite resource and modification of resource assignments. 
The tasks on the critical path become candidates for increase of resource. In fields like 
the construction industry this may be accomplished with premium payment for finish-
ing tasks early. CPM supports the allocation of resource to control completion time. 
Algorithmic solutions and tools to support them exist for CPM.

10.2.2 Resource Allocation
In engineering and in research it is sometimes the case that the time limiting tasks in 
the critical path require special talent that is limited in availability. It may or may not 
be possible to increase resource for particular tasks. Sometimes the cost increase of 
special talent must be balanced against the increased technical risk if the resource is 
not added. A critical talent may have to be shared across more than one program. Task 
precedence may be coupled to available talent and cost. The assumption of task inde-
pendence that underlies many of the algorithmic approaches may not be valid in prac-
tical situations

Time may be only one of several optimization criteria; development cost, inclu-
sion of a particular partner, or risk may be as or more important. There then exist sev-
eral effectiveness measures for optimization of the plan. This is the general system 
problem of resource allocation for which heuristic methods are used rather than algo-
rithmic approaches. The core technical steps provide such a process.

10.3 Behavior Model for Core Step 6

Figure 10-1., FFBD View of Core Step 6, describes the steps taken to create a plan in 
terminology like that used in scheduling and planning. The objects to be used in plan-
ning are the resources, primarily people. An initial concurrent step, 6.1, is to develop a 
resource profile of the kinds of talent needed and the available resource in useful 
classes. This is a structure model. Another concurrent step 6.2, is to develop the tasks 
to be performed. The third concurrent task, 6.3, is to develop precedence relationships 
among the tasks. This may also involve definition of alternative paths as well as prece-
dence needed for purposes like risk remediation. The result of tasks 6.2 and 6.3 is 
equivalent to the Functional Flow Block Diagram view of the behavior modeled by 
the plan. 

The next three concurrent steps complete the behavior, map it to objects, and 
assign time performance attributes. Step 6.4 assigns the Resources to Tasks. This is 
identical to mapping functions to objects. Step 6.5 adds milestones to the plan. The 
milestones are outputs from the tasks. Their inclusion, with the tasks and precedence 
relationships, constitutes an executable behavior. In step 6.6 the Task Durations are 
added. This allows the behavior to be executed and generate time lines and slack 
times. 
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Frequently the next step taken is to examine the work loads assigned to the peo-
ple to see if the loads are balanced. Some people may have excessive work to do and 
others may be too lightly loaded. Step 6.7 examines the loading of resources. If the 
work loads are not level, the planning loops back to reassignment of resources, 
adjustment of milestones, reassignment of task durations. This loop continues until 
the resources and tasks are commensurate. When the loads on people are balanced the 
plan can be evaluated for other purposes.

 

In step 6.8 the plan is executed as a behavior. Slack times are established and the 
critical path through the plan is established. If the slack times are small, the plan is 
satisfactory so far as time is concerned. If the slack times are large, the plan is unsat-
isfactory and resources and tasks must be readjusted. Concurrently step 6.9 assesses 
the business realities which include risk, time to market, funding rate, competition, 
and validation of progress. The plan must mitigate identified risks with alternative 
paths and resource. It must get product to market in the available window, and meet 
competitive product features in that time frame. The rate of expenditure must match 
funding rates. The schedule must include deliverables to validate progress as the 
work proceeds. Task 6.10 assesses the plan for incremental builds of product for early 
validation and for periodic release of product to customers. This is an iterative 
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sequential approach to development of a series of plans and performing trade-off 
based on the criteria of steps 6.8, 6.9 and 6.10. The loop back to the beginning of Fig-
ure 10-1., FFBD View of Core Step 6 generates additional plans until one that is near 
optimal is found.

10.4 Information Model for Core Step 6

Figure 10-2., Information Model for Core Step 6 describes the information needed in 
this step. The subject system is built from a set of components which are assembled, 
tested and validated to show that the desired emergent behavior has been attained. Val-
idation must be done at the level of full integration because the properties of the sys-
tem depend upon the interactions of the components in both linear and non-linear 
ways.

The Sequential Build and Test Plan orders the building and testing of the compo-
nents. The order of building depends upon and accounts for a variety of Business 
Realities. These realities may be time-to market, funding rate, risk, competition, or 
need for early validation of progress. Any or all of these realities may be important. 
They constitute the optimization criteria or effectiveness measures for the creation of 
the plan. 

The risk may be cost risk, schedule risk, or technical risk or any combination of 
the three. The risk is associated with the individual components, whether they will be 
available and work properly within scheduled cost and time. The risk is recorded in 
models as an attribute of the components, but the risks need to be assessed for their 
importance to the success/failure of the system as a whole. They cannot be simply 
summed for the system, but must be assigned weights depending upon their impor-
tance. There is no technique for measuring risk directly, like weight or height. Rather 
risk values and weights may be estimated by experienced engineers and managers 
assigned the responsibility, or they may be estimated by survey of an informed group 
of people using statistically valid techniques (Saaty 1983). The importance of risk in 
planning depends upon the important aspects of the application, captured in the effec-
tiveness measures, particularly for technical risk. If the effectiveness measures include 
performance properties like availability, safety, or security, then the risks associated 
with these properties of the system will be critically important.

Much of the planning work is based on estimates of the total size or cost of the 
development. Techniques and software exist for creating a historic basis of estimate 
and for estimating project cost and resource needs, PRICE Models from Lockheed- 
Martin and COCOMO Models, (Boehm 1981), (Thusen and Fabrycky 1989).

Validation of progress is accomplished by establishing that the response of 
things is correct. The system or component is specified, designed, or implemented 
properly if the responses to excitation are the needed responses. This is a matter of 
evaluating complete response threads through the system or of the portion of the 
threads for a particular component. 
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Tracking and reporting compares the plan against the time, cost, resource, and 
milestones for the completion of things, against validated progress based on response 
characteristics. Do the things do what was intended. The work breakdown structure 
defines the tasks to be performed and these tasks are assigned to resources (people) as 
work packages. It is important that the work breakdown structure and the work pack-
ages correspond to the actual parts tree emerging form the project, rather than a con-
tractual parts tree which has changed substantially during the project.
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10.5 A Check-off List for Planning Plan

Although the planning work involves systems engineering management heavily, it is 
important that it be driven by both the technical realities and the business/management 
realities. These realities may be in sharp conflict at times and must be resolved. A 
check off list representative of planning is included here at the end of the chapter 
because of the importance of technical input to planning. It is vital to take into account 
all of the engineering results by modifying plans whenever trade-off analysis results in 
an accepted design or architecture for the system or a component.

A Check-off List
• Plan based on the design or architecture information emerging from core step 5, 

Perform Trade-off Analysis

• Demands an understanding of:

• The Systems Engineering Process
• Specification to suppliers
• Specification to other engineering disciplines
• A process for handling discoveries/change
• The project tasks: top down for deliverables & resources, bottom up for fea-

sibility
• Definition of WBS plan tasks

• Identify tasks
• Create sub-tasks
• Determine sub-task flow

• Sub-task interdependency

• Create Pert-type diagram, CPM diagram, or Behavior Model
• Create decision basis, issue and issue resolution rationale notes, (Blanchard 

and Fabrycky 1990)
• Determine sub-task resource profile

• Identify work environment needs

• Work space
• Tools
• Training

• Estimate manpower needs of tasks

• Person hours
• Labor category
• Experience
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• Assign resources to tasks

• Define responsibilities associated with tasks
• Document

• Assign sub-task start/stop times based on:

• Interdependency
• Schedule negotiated with informed engineers and management
• Resource availability

• Develop and insert milestones into plan

• Insert a hierarchy of milestones

• Major project deliverable milestones
• Top level review milestones
• Fine grain progress and quality review milestones at engineering level to 

find unknown unknown’s early
• Level resources and iterate until satisfactory

• Analyze plan according to criteria below

• Elimination of negative variance
• Reduction of slack time
• Optimization for cost effectiveness
• Optimization of time to delivery using critical path
• Optimization to account for all effectiveness measures, iterative and heuris-

tic
• Adjust plan to funding rate
• Inclusion of tasks to mitigate risk
• Inclusion of tasks for test and validation tied to excitation and response 

models
• Partition of project output for successive release as needed for plan conver-

gence or market needs
• Definition of tasks and precedences for early validation based on partial 

builds
• Iterate to make plan converge

• Introduce combinations/concurrence/resource changes as needed to meet 
plan criteria:

• Tailor Company Process and Specification Standards
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• Collect relevant process and specification documentation

• Company standards (Purpose is for reuse of best practice, not enforce extra 
work)

• Contractual standards (Negotiate to keep work lean)
• Applicable government standards (safety, environment, ISO, etc.)
• Review for internal consistency and removal of all unnecessary work
• Remove inconsistencies and any unnecessary work
• Record issues and rationale for decisions
• Document or store results

• Generate Task Plan and Review for Approval with Appropriate Authority and 
the Contributing Engineers

• Cite plan objectives
• Identify plan products
• Fuse any preceding plan results

10.6 Exercises

1. List the elements of a build and test plan

2. Describe the relationship of a build and test plan for an entire system to the plan for 
one of its components.

3. Develop a context diagram for the system which creates build and test plans.

4. Develop a structure diagram for the system which creates build and test plans. Map 
the behavior of Figure 10-1., FFBD View of Core Step 6 on page 221 to this struc-
ture.

5. Create an overall systems engineering plan for getting a new model of pocket knife 
conceived, designed, and to market. Include a time schedule that is based on a work 
breakdown structure. Show milestones for parts, part assembly, the full knife, 
progress reviews to validate progress, and cost to milestone. 

a. Identify what is to be reviewed.

b. Assign resources to work packages that will result in the work being per-
formed.

c. Show time to market and funding rate limits met by the plan.

d. Assume low cost competition from overseas, and assess risks.

6. Identify three tools which are commercially available to aid in the development of 
plans. Do these tools cover the functions needed in planning? Do they integrate 
with system developments tasks?
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7. Identify 10 risks that every plan faces.
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Concept Analysis
11.1 What Concept Analysis Is

Concept Analysis is the study of the business which will use the subject system. The 
study establishes what features the subject system should have by analyzing the value 
of different features to the business, to its owners and to users of the system. This is 
shown in Figure 11-1., Tiers of Analysis and Decomposition/Synthesis.
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The tiers of analysis, domain analysis through component analysis, apply the 
same core technical process to different objects in the developmental part tree that 
extends from components to domains or collections of businesses. The flow of the 
analyses may be bottom to top, synthesis; or top to bottom, decomposition; or a com-
bination of the two. 

At any tier, the analysis can terminate for part of the system and a specification 
may be produced for business partners or suppliers. In the domain and concept tiers 
businesses may be discovered which are necessary for product success, but are consid-
ered to be outside the business arena of the company developing the product. At the 
lower tiers, entire subsystems or particular components may be specified for external 
development or as a purchased subsystem or component from a supplier.

The subject system studied in concept analysis and the other tiers of analysis 
may be any thing: a product, a process, a business, a plan, etc. They all have in com-
mon: a set of criteria for what is most important, a behavior, a set of parts to build 
them, and design/architecture alternatives in how the behavior is allocated among the 
alternative parts which are selected for the structure. The similarities among product, 
process, business and plan may not be apparent because of different choices of com-
mon words used to describe the modeling items which are common to them all. Table 
7., Modeling Items, associates a few of the commonly used words with modeling 
items.

Modeling Items Product Process Business Plan

Parts that do 
things, (Objects)

People, compo-
nents or sub-sys-
tems

People or equip-
ment

People, depart-
ments, divisions, 
facilities

Resources

What is done, 
(Behavior)

Feature, response Process step, pro-
duction rate

Job, activity, task, 
responsiveness

Task, schedule

Criteria for 
choice, (Effec-
tiveness mea-
sures)

Cost, needs, qual-
ity

Cost, productiv-
ity, quality

Cost, efficiency, 
quality, service

Cost schedule, 
time schedule, 
resource utiliza-
tion

Interconnection 
of parts and total 
system perfor-
mance (Design/
architecture)

Design The process Model The plan

Table 7: Modeling Items
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11.2 Applying the Core Technical Process to Concept Analysis

This chapter focuses on how to apply the core technical process to concept analysis. It 
does this with a simple example problem which uses a product as the subject system, 
but could have used a process, a business or a plan. The example problem chosen is 
an automated teller machine, ATM. Solutions to representative parts of the ATM 
problem are described in this book to keep the discussion reasonably compact.
The ATM product was selected to be small, easily understood by people through their 
daily experiences, and to encompass interesting aspects of modeling. It has been used 
as an example in publications and other books. The approach used in this book is 
unique in going from concept through component specification with executable mod-
els as a systems problem. The approach is unique in using a single repeated technical 
core process, shown for reference in Figure 11-2., FFBD View for the System Engi-
neering Core Technical Process, applied first to bank context and then to the bank.

 The approach eliminates unneeded modeling as much as possible to be efficient 
and the example illustrates this balance of thorough modeling against rapidly elimi-
nating alternatives to maintain engineering productivity. Where decisions can be 
made early and clearly regarding component choices for optimizing performance, this 
is done. Where computation is required to decide among alternatives the more formal 
trade-off step, Core Step 6., is applied. In the example the decisions of both kinds are 
noted.
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11.3 Core Steps Applied to the Context of the Bank with the ATM System 

Concept analysis is applied to the business using the ATM system, rather than to the 
ATM system itself, as shown in Figure 11-1., Tiers of Analysis and Decomposition/
Synthesis on page 229. That business is a bank. Each of the seven steps as applied to 
the bank will be illustrated for concept analysis. The goal is to establish the concept 
for the ATM system based on value to the bank when it uses the ATM’s in place of its 
present tellers and their manual entry of transactions. 

11.3.1 Assess Available Information
The available information is taken from a problem statement that was written for soft-
ware engineering development. Since we are considering the total ATM system we 
expect that a range of system related problems that need to be corrected in the avail-
able information will be found. The available information is taken from a problem 
statement in (Rumbaugh et al. 1991, 151) Substitutions to replace the word software 
with system names are inserted, italicized and in brackets.

Initial Information for an Automated Teller Machine System
“Design the software [an automated teller machine system] to support a computerized 
banking network including both human cashiers and automated teller machines 
(ATM’s) to be shared by a consortium of banks. Each bank provides its own computer 
to maintain its own accounts and processes transactions against them. Cashier stations 
are owned by the individual banks and communicate directly with their own bank’s 
computers. Human cashiers enter account and transaction data. Automatic teller 
machines communicate with a central computer which clears transactions with the 
appropriate banks. An automatic teller machine accepts a cash card, interacts with the 
user, communicates with the central system to carry out the transaction, dispenses 
cash, and prints receipts. The system requires appropriate record keeping and security 
systems. The system must handle concurrent access to the same account correctly. The 
banks will provide their own software for their own computers; you are to design [the 
ATM system] the software for the ATM’s and the network. The cost of the shared sys-
tem will be apportioned to the banks according to the number of bank customers with 
a cash card.”

The usual situation is initial information that is partially complete, inconsistent 
in level of detail, partly requirements, partly design, and partly operations concept. 
Much of the information may be not be directly verifiable, some of it may even be 
false or misleading. Modifications to the initial information are produced in this first 
core step. Each of the modifications must be documented and tracked. They must be 
agreed to be all of the interested stakeholders. The art of systems engineering starts at 
this step. No methodology can tell an engineer what questions need to asked about the 
system. For this education and experience are the guides. The best systems engineers 
learn how to ask the correct questions while avoiding unnecessary complexity that can 
arise from rote dedication to a methodology.
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The subsequent modeling process discovers additional problems and suggests 
their correction. The sentences in the initial information are numbered below. Modi-
fied statements are shown as bulleted sentences and comments about them are 
dashed.

1. “Design the software [an automated teller machine system] to support a com-
puterized banking network including both human cashiers and automated teller 
machines (ATM’s) to be shared by a consortium of banks.”

• The automated teller machine system shall replace interactions between bank 
tellers and bank customers with interactions between the ATM system and cus-
tomers.

•  It is not yet known which existing transactions shall be replaced.
• It is not yet known how much of the network belongs in the ATM system or 

if this may vary with different bank customers for the ATM system.
2. Each bank provides its own computer to maintain its own accounts and pro-

cesses transactions against them.

This statement contains design information about banks which may not repre-
sent the banking world. This will need to be substantiated or modified to match 
the real world situation. In considering the context and boundaries of the sys-
tem we can choose to make this a requirement or consider the possibility that 
the computers are part of the system or perhaps that there is a third party that 
owns and operates the computers.

Banks might use an external service like First Data Corporation to track their 
transactions and provide both internal information to the bank and monthly 
reports to bank customers.

3. Cashier stations are owned by the individual banks and communicate directly 
with their own bank’s computers.

• Cashier stations are owned by the individual banks.

•  Cashier stations communicate directly with their own bank’s computers.

•  Sentence 3. has been broken into two independent statements.
•  The two statements describe the structure of banks, again this needs to be 

verified. In the absence of verification the two statements will be accepted 
as generally true of banks not yet using ATM systems.

4.  Human cashiers enter account and transaction data.

•  Human cashiers enter account and transaction data.

•  The statement describes the structure of banks.
•  The statement is accepted as generally true of banks not yet using ATM 

systems.
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5. Automatic teller machines communicate with a central computer which clears 
transactions with the appropriate banks.

• The automated teller machine system shall communicate the transactions it 
captures to the banks.

• The automated teller machine system shall execute only those transactions for 
which validation is received from the banks.

•  Automated teller machines may mean only the hardware/software that inter-
faces with bank customers.

•  Automated teller machines may be only a subsystem or component of the 
ATM system.

•  The interface with banks is not yet clear.
•  For a viable product line it may be necessary to configure ATM subsystems 

for particular banks, tailored to what the bank already owns or leases.
•  “Clears transactions” is ambiguous. It can mean validating a submitted 

transaction so that the ATM system can complete the transaction or it can 
mean communicating the transaction to the bank without a validation proce-
dure in place. The second bullet assumes it means validation, and the proce-
dure for validation is not identified. The procedure could vary among 
different banks using the ATM system.

6. An automatic teller machine accepts a cash card, interacts with the user, com-
municates with the central system to carry out the transaction, dispenses cash, 
and prints receipts. 

• The automated teller machine system shall accept transactions after reading a 
cash card and receiving a valid pin number from a system user.

• The automated teller machine system shall dispense cash only for those cash 
transactions for which validation is received from the banks.

• The automated teller machine system shall print receipts for the transactions 
executed.

•  The words “interacts with the user” are redundant with 1. above.
•  The words “communicates with the central system to carry out the transac-

tion” are redundant with 5. above.
7. The system requires appropriate record keeping and security systems.

• The ATM system shall maintain correct records.

• The ATM system shall generate correct reports.

• The ATM system shall keep information secure.

• The ATM system shall keep money secure. 
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8. The system must handle concurrent access to the same account correctly.

• Simultaneous or overlapping requests to the ATM system for transactions on 
the same account shall be adjudicated at the point in the network where simul-
taneity or overlap is detected.

•  “Simultaneous” is ambiguous here. It can mean either that two requests are 
made at exactly the same time, or that the duration of two user sessions on 
the same account overlap. 

•  Simultaneous or overlapping requests on the same account can be entered 
into ATM machines on different networks on different continents. Only a 
central facility serving that bank account can know that they are simulta-
neous and follow an appropriate procedure.

9. The banks will provide their own software for their own computers; you are to 
design [the ATM system] the software for the ATM’s and the network. 

• Design the ATM system.

• Begin the design work with concept analysis.

•  These are instructions.
10. The cost of the shared system will be apportioned to the banks according to the 

number of bank customers with a cash card.

• The ATM system shall operate at maximum benefit/total-cost to the banks it 
serves.

•  Sentence 10. deals primarily with how the banks using the ATM system are 
to be billed, which may best be tailored for different bank customers of the 
ATM system vendor.

•  Total cost/benefit to the bank will be a selection factor for banks choosing 
an ATM system vendor.

Requirements Extracted from the Initial Information
The bullets above are collected here and numbered. They do not comprise a complete 
set of requirements. Many are not verifiable. They apply at different tiers of hierar-
chy. Some of the bullets are not requirements. Some are statements about the banks as 
they exist or are instructions about the problem.

Requirements for the ATM system

• 11.1 The automated teller machine system shall replace interactions between 
bank tellers and bank customers with interactions between the ATM system 
and customers.

• 11.2 The automated teller machine system shall communicate the transactions 
it captures to the banks.
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• 11.3 The automated teller machine system shall accept transactions after read-
ing a cash card and receiving a valid pin number from a system user.

• 11.4 The automated teller machine system shall execute only those transactions 
for which validation is received from the bank.

• 11.5 The automated teller machine system shall dispense cash only for those 
cash transactions for which validation is received from the bank.

• 11.6 The automated teller machine system shall print receipts for the transac-
tions executed.

• 11.7 The ATM system shall maintain correct records.

• 11.8 The ATM system shall generate correct reports.

• 11.9 The ATM system shall keep information secure.

• 11.10 The ATM system shall keep money secure. 

• 11.11 The ATM system shall operate at maximum benefit/total- cost to the 
banks it serves.

Statements about the Structure of Banks

• B1. Cashier stations are owned by the individual banks.

• B2. Cashier stations communicate directly with their own bank’s computers.

• B3. Human cashiers enter account and transaction data.

• B4. Simultaneous or overlapping requests to the ATM system for transactions 
on the same account shall be adjudicated at the point in the network where 
simultaneity or overlap is detected.

Instructions about the Problem

• I1. Design the ATM system.

• I2. Begin the design work with concept analysis.

11.3.2 The Three Concurrent Core Steps, 2, 3, and 4
The next three core steps: Define Effectiveness Measures, Create Behavior Model, 
and Create Structure Model are concurrent. Because text in a book is read sequentially 
the full concurrency cannot be shown in the written form of this example. It is often 
useful to consider the effectiveness measures very early because they provide guid-
ance in thinking about the models. In the development of large systems the problem 
will likely be apportioned among teams such that work is proceeding in parallel.
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Effectiveness Measures for the Bank
This work, like the assessment of the initial information relies on the experience and 
creative thinking of the developers. The issue here is what are the statements about 
the ATM system that will make it succeed or fail when brought to banks in competi-
tion with other ATM systems. A first selection is made from the results of analyzing 
the initial information. The selection is made by applying criteria: (1.) “If this were 
true the bank would buy our system! or (2.)“If this were not true the bank would 
reject our system!”

• 11.7 The ATM system shall maintain correct records.

• 11.8 The ATM system shall generate correct reports.

• 11.9 The ATM system shall keep information secure.

• 11.10 The ATM system shall keep money secure. 

• 11.11 The ATM system shall operate at maximum benefit/total-cost to the 
banks it serves.

Statements 11.7 through 11.10 are chosen based on question 2. Statement 11.11 
is chosen based on question 1. Bankers will choose the system that gives them the 
maximum benefit/cost. The problem now faced by the designer is whether this is a 
complete set of effectiveness measures. It is helpful at this point to think about the 
structure of the context of a bank.

Context Structure for Bank
At this point a simple context for bank is needed. The functions to be performed and 
the important attributes can be added later. Figure 11-3., Initial Structure of Bank 
Context shows an initial structure for the context of bank.

Bank

Individual
Customer

Commercial
Customer

has accounts and
makes transactions

ATM
System

provides

uses uses

service

has accounts and
makes transactions

Figure 11-3.  Initial Structure of Bank Context
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The effectiveness measures have not taken into account the customers. Both 
individual customers and commercial customers have accounts with the bank and 
make transactions there with tellers. When the ATM system is installed, they may 
alternatively use the ATM system. It must be so attractive to them that they will use it 
in preference to the tellers. Otherwise the system will fail in the marketplace.

• Customers shall prefer to use the ATM system over the bank tellers.

Effectiveness Measures for the Bank
An initial set of six effectiveness measures, EM’s, can now be collected for the ATM 
system. If others are found during modeling they will have to be added.

1.  EM1. The ATM system shall maintain correct records.

2.  EM2. The ATM system shall generate correct reports.

3.  EM3. The ATM system shall keep information secure. 

4.  EM4. The ATM system shall keep money secure. 

5.  EM5. The ATM system shall operate at maximum benefit/total-cost to the 
banks it serves.

6.  EM6. Customers shall prefer to use the ATM system over the bank tellers.

Inspection of them shows that the first four deal with what the ATM must do. With 
further analysis they can help with the analysis of the ATM system. Effectiveness 
measures EM5. and EM6. deal with value to the bank and value to the customer. They 
are of direct importance to the concept analysis.

To proceed further it is necessary to define the customer, the behavior of the cus-
tomer, and the structure of the bank. Only the individual customer will be considered 
to keep the example short.

Define the Structure for Individual Customer
Figure 11-4., Structure for Individual Customer shows the association of the customer, 
a person, with the accounts, part of the bank, which the customer has opened.
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If there are other kinds of accounts they can be added. This is enough information to 
help define the behavior of the individual customer.

Context Behavior, the Individual Customer
When the behavior of the customer is captured, the major excitations for the system 
are obtained. They will be used not only in context analysis, but in defining compo-
nents and in testing and validating the system and its components. Figure 11-5., View 
of Behavior of Individual Customer, shows many alternative paths in the behavior of 
the customer. Alternative paths are annotated with estimated probabilities of their 
usage. The customer may go to either the bank or to an ATM. Once there the cus-
tomer may perform a variety of transactions. The FFBD captures what the customer 
does and it raises two questions:

1. Why would the customer prefer the ATM system?

2. Which of the transactions are the heaviest load on the bank tellers and can be 
automated by the ATM system.

Preference for the ATM System 

Customers are likely to prefer the ATM if it is in a safe place, has shorter lines than 
the bank, is closer to home and to work, and is easy to use. Safe place is a matter of 
finding locations, and will depend upon conditions in particular communities. Easy to 
use is a human machine interface design issue that will be considered as components 
are designed. It is important, but premature in concept analysis. Shorter lines and 
closer to home are a matter of the number of machines put in place.

If one puts in place many more ATM machines than existing tellers, then the 
lines will be shorter 

Individual Customer
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Account number

Make transactions

has
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Account

Savings
Account

Loan
Account

Investment
Account

Account

Customer name
Account number1+1+

Figure 11-4.  Structure for Individual Customer 
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If one puts in place many more machines than branch bank offices, then the 
machines will be closer to customers than branch offices with tellers. If the ATM’s are 
to be a third of the distance to a branch bank on average, then there must be about 3x3 
= 9 ATM machines for each branch office. The effectiveness measures and behaviors 
are beginning to provide refined information about the structure of the bank and the 
ATM system.

Which Transactions to Automate

Applying for an account can be automated with some difficulty but results in loss of a 
manager directly assessing the applicants, and loss of an opportunity to sell additional 
services. Deposits and withdrawals from savings and checking are simple to automate. 
Repaying loans is often done in person or by mail. Making and selling investments is 
often conducted by phone or personal computer. The frequency of occurrence of these 
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transactions with tellers can be obtained accurately and quantitatively from bank 
records. Transactions on checking and savings accounts are most frequent, with cash 
withdraw from checking the highest. These frequencies of occurrence, after normal-
ization, are the probabilities for choosing a branch of the large “or” in Figure 11-5., 
View of Behavior of Individual Customer, representative values of probability are 
shown on each branch. If loans and investments are conducted dominantly by mail or 
phone, then automating savings and checking transactions can move 90% of the 
transaction from tellers to ATM’s - provided the ATM’s are attractive to use. Proba-
bilities of going to the ATM or to branch banks are most reliable when measured by 
observing bank customers choices with an installed system. In advance of an installed 
system they are best obtained by survey of the bank customers.

Since there is no important trade-off for the context, we model the bank.

11.4 Core Steps Applied to the Bank with the ATM System 

We accept the models already produced as available information, core step 4.1.

11.4.1 Structure of the Bank with the System, Core Step 4.5
 Figure 11-6., Structure of the Bank, models the important details we need to under-
stand the benefit to a national bank. Unneeded details have been left out of the figure.
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Only the gross structure and the tellers are shown. The numbers shown are estimates 
for a large bank. Numbers for a particular bank or national averages could be used. 
The national bank is supported by about 10 regional banks. Each of these is supported 
by about 20 local banks, and for each local bank there are about 10 branch banks. The 
dominant number of tellers work in the approximately 2000 branch banks. It is in the 
cost in these branches that the ATM system will have its major impact, though it will 
benefit all of the banks. It is the branch banks that are located in the community to pro-
vide nearby service to bank customers whose deposits are loaned by the bank to gen-
erate income. 

A classification for branch bank and bank attributes is given in Figure 11-7., 
Classes of Bank.

Teller
2 to 8, av. 4

Branch
Bank

Local
Bank

Regional
Bank

National
Bank

~ 10 ~ 200 ~ 2000

Note: ~ 2000 Branch Banks
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~ 20,000 ATM’s 
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has accounts 
and makes 

ATM
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transactions
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and makes 
transactions

has

10+
3+

Figure 11-6.  Structure of the Bank
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contains a
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242



Concept Analysis
 

 The attributes of the subclasses are inherited from bank. The values shown for 
branch bank are estimated average values for a typical branch bank. These values 
would be different for a particular branch bank (an instance) in a particular bank.That 
more precise data is available from the bank.

 A more detailed model of Teller is given in Figure 11-8., The Teller.

Bank
Investment
Building Investment
Building Area
Land Investment
Land Area
Investment Cost
Operating Cost
Heating/cooling
Electricity
Maintenance
Taxes

Perform Bank Business

Total Cost

Local
Bank

Regional
Bank

National
Bank

Branch Bank
Investment $750K
Building Investment $500K
Building Area 10,000 sq ft
Land Investment $250K
Land Area 160,000 sq ft
Investment Cost $37.5 K/yr
Operating Cost $17.5K/yr
Heating/cooling $1.5K/yr
Electricity $4K/yr
Maintenance $2K/yr
Taxes $10K/yr

Perform Branch Business

Total Branch Cost $50K/yr

Figure 11-7.  Classes of Bank
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Concept Analysis
The important attribute for teller for this analysis is the burdened salary.

11.4.2 Effectiveness Measure For Bank with the System, Core Step 2
The two effectiveness measures identified as of greatest importance in this concept 
analysis are:

• EM6: Customers shall prefer to use the ATM system over the bank tellers”

• EM5: The ATM system shall operate at maximum benefit/total-cost to the 
banks it serves.

Effectiveness Measure EM6. was used to generate some structural numbers about the 
number of ATM machines per branch office and per teller. That information and the 
structure and behavior modeling that has been done let us write equations for the ben-
efit for the ATM system.

Total Benefit = Teller Cost Reduction + Branch Office Cost Reduction

At least 3 of 4 tellers can be replaced with about 20,000 ATM machines.

Teller Cost Reduction = # Branch Banks x 3 x burdened salary of Teller.

Teller Cost Reduction = 2000 x 3 x $40,000 = $240 M.

At least 75% of branch offices can be moved into leased space of 500 sq. ft. in 
popular locations like supermarkets for about $25,000 /yr. These numbers can be 
refined in particular communities and with particular businesses

Branch Office Cost Reduction = 0.75 x # Branch Offices x (Total Branch Cost - 
$25,000)

Branch Office Cost Reduction = $37.5M

Total Benefit = $280M /yr. or $14,000 per yr. and installed ATM Machine

For a bank with an annual earnings of about 2% of deposits, this saving repre-
sents an equivalent increase in deposits of about $14B. The benefit is very large. To 
warrant the investment, the cost of the ATM system needs to be recovered in about 
two years. The selling price of the system should be less than about $560M or $28,000 
per ATM machine on the system. If the system can be created with a combined build, 
install, operate cost of about $14,000 per ATM machine, then there is an excellent 
business here.

Teller
Burdened salary: $40,000

Execute Transactions

Figure 11-8.  The Teller
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11.4.3 Behavior of the Bank with the ATM System, Core Step 3
In this example the behavior of the bank is not changed quantitatively. Rather some of 
the activity in the bank is moved from tellers to the ATM system. 

Figure 11-9., View of Behavior of Individual Customer Using the ATM System, 
shows the excitations to which the ATM system must respond. The behavior model 
for the system is equivalent to a set of written functional requirements. 

We already know that some of the excitations are unlikely. Since we have not 
fully evaluated their benefit, we represent all of the excitations and responses. The 
ATM system stays on at all times, ready to respond to a user. Consequently its behav-
ior will look like an infinite loop. When the customer stops and so notifies the ATM 
system, the system goes back to its initial function of presenting to the customer the 
start instructions. 

Figure 11-10., View of Behavior of the ATM System, shows the responses and 
loops.
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Withdraw
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OR
Continue
or Stop
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Sell
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Go to
ATM

Figure 11-9.  View of Behavior of Individual Customer Using the ATM System 
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The eight functions in Figure 11-10., View of Behavior of the ATM System, are only 
top level names. Each of them must be decomposed and refined into complete descrip-
tions of exactly how the system responds to every input from the user and from the 
banks. This detail is left until the system and the components are designed. At this 
point in the development it is important to establish the responses required and the 
benefit of each response. To get at the benefits it is necessary to have values for all of 
the attributes used in the effectiveness measures and requirements. in this problem 
they have been estimated during the model development. The job of getting accurate 
values is part of trade-off analysis.

11.4.4 Trade-off Analysis of the Bank with the ATM System, Core Step 5
The preceding analysis has shown large potential payoff to the bank. It has captured 
bank behavior and structure, ATM system behavior the criteria for trade-off and the 
equations. It has provided an upper limit for the cost of producing, installing, and 
maintaining the system. 

The benefit/cost needs to be maximized, EM 5., to:
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Figure 11-10.  View of Behavior of the ATM Sys-
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• Provide the bank the largest benefit/cost ratio

• Be competitive with other suppliers

• Have a satisfactory profit margin for the business of supplying ATM systems

 Figure 11-5., View of Behavior of Individual Customer on page 240, identifies 
nine different features that may be embodied in an ATM machine. The list is repre-
sentative of useful features but is not exhaustive. These nine features can be com-
bined in 503 different ways. It is this explosion in the numbers of possibilities that 
makes algorithmic solution of system problems impractical. Creative engineering, 
heuristics, are used to prune the large solution space. The probabilities in the figure 
show which features have the largest benefit individually. Which transactions the 
bank automate should automate follows from the benefits shown in Table 8., Feature 
Benefits to Bank. Features 1., 2., 3., 4., and 6. should be automated initially. The deci-
sion is made without considering all 503 options.

 

Some of the features require similar kinds of support. Withdrawing money from any 
kind of account requires a money dispenser, a money supply, and periodic resupply of 
money. Deposits to any kind of account require a safe repository for the deposit, and a 
daily pick-up of the deposited material. This information suggests how to package the 
features in different kinds of ATM machines that interface with the public.It is the 
analysis of the system tier which follows concept analysis that establishes the cost of 
these alternatives and the structure of the ATM System.

Figure 11-11., Kinds of ATM Machines, classifies the kinds of machines that are 
likely to emerge from concept analysis based on the modeling completed so far.

Feature Benefit per Installed ATM Machine

1. Deposit in Checking $1680

2. Withdraw from Checking $2880

3. Deposit in Savings $560

4. Withdraw from Savings $1200

5. Borrow Money $4.80

6. Make Loan Payment $560

7. Make Investment (1) $560

8. Sell Investment (1) $560

Table 8: Feature Benefits to Bank
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Attributes and functions are inherited and not listed a second time in the sub-
classes. the money machine and deposit machines are two obvious candidate products. 
Their relative merits depend upon their relative costs. The transaction machine is an 
advanced work station for banking that may become viable someday, but is a poor 
candidate for an early release of product. Analysis of the system tier can uncover other 
important types with very different costs.

Note that the computation machinery for trade-off was established in the earlier 
modeling steps. In the trade-off analysis it is necessary to get adequate values for the 
attributes. In this example that means going to banks to get their measured and 
recorded data. That data is superior to engineering estimates such as those above. The 
data will vary from bank to bank and region to region. It may be important to get the 
data from several banks if the trade-off criteria do not provide wide margins for select-
ing product features.

ATM Machine
Total Withdraw Cost

Money Machine

Execute Withdraw form Checking
Execute Withdraw from Savings

Deposit Machine
Total Deposit Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment

Bank Transaction Machine
Total Transactions Cost

Execute Apply for Account
Execute Borrow Money
Execute Make Investment
Execute Sell Investment
Execute Cash Savings Bonds
Execute Wire Funds
Execute Get Cashier Check
Execute Get Money Order
Execute Get Investment Data 

Figure 11-11.  Kinds of ATM Machines 
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Within the scope of systems engineering there are a multitude of computation 
and simulation methods that are used to find attribute values when measured values 
are unavailable. They simulate the performance and properties of physical and logical 
things like cost, weight, reliability, power consumption, algorithmic complexity, con-
trol loop error, crack propagation, etc. It is a responsibility of the systems engineering 
management process to ensure that the specialized engineering talent for this work is 
available and applied when needed.

11.4.5 Create the Sequential Build and Test Plan, Core Step 6
The modeling through trade-off has established the bank context, the behavior of the 
user, relevant bank structure, how the product changes the bank, behavior and 
requirements for the ATM system, and value to the bank. The next step is to decide 
how to implement this opportunity. The modeling has identified potential business 
relationships that are needed. In this example the bank may want to down size and 
relocate branch offices into places like supermarkets. A vendor of ATM systems with 
existing business relationships with national supermarkets can combine business re-
engineering consulting with the suppling of ATM systems. This is a matter of decid-
ing what business the vendor of the ATM system product will pursue. It is the issue of 
how the vendor business will be implemented and what work must be done to make 
that happen. The business implementation plans will differ depending upon the 
choices made. If the choices made do not completely span the system solution, then 
the products need to interface with the products of other companies, or partnerships 
need to be created. One possible business choice follows:

Business scope:

1. Supply hardware and software for the capture and transmission of transactions 
to a communication network.

2. Lease communication facilities.

 requires implementation of business relation with communication companies 

3. Build custom interfaces to the MIS system of the bank

Requires involvement with banks to define functionality and tailorable inter-
faces

4. Interface with a separate business that performs back end transaction process-
ing and reporting

Requires relationship with a company like First Data Corp.

5. Service ATM systems, repair, and resell ATM equipment.

 Ensures a capability to maintain an available system

 Provides a separate revenue source
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 Provides a path to continuing business in a saturated market for ATM’s

6. Consult to banks on installation of ATM systems and down-sizing branch 
banks

Ensures internal bank procedures for security of information and funds.

Requires relationships with supermarket chains.

Maintains a presence with banks to get sales

The plan, constructed for the ATM system at concept level, schedules implemen-
tation, test, and validation tasks for:

• Creating relationships with banks, communication companies, transaction pro-
cessing companies, and supermarket chains.

• Performing analysis of the system tier on The ATM System with focus on sub-
systems for:

•  Hardware and software for capture and transmission of transactions.
•  Hardware and software for diagnostics, field service, field installation, sys-

tem management, and validation of performance.
•  Hardware and software for interfaces with communications, banks, and 

transaction processing.
•  Management of the whole ATM system business

• Recruiting, training, housing, and equipping personnel.

The plan is not just about engineering, but about implementation of the ATM 
system business and validation of the work as it proceeds. At this level of understand-
ing the plan will lack detail for implementation. Much of that detail is developed in the 
next tier of development, analysis of the system tier, described in the next chapter.

11.5 Summary

Performing the systems engineering at any tier is an art of finding a near optimal solu-
tion while expending as little engineering resource as possible. The modeling needs to 
uncover the subtle low cost, high performance solutions. The modeling needs to help 
the engineer quickly reject most of the multitude of non-optimal solutions in the 
search for the low cost high performance solution that is near optimal. 

11.6 Exercises

1. Write a set of requirements statements equivalent to Figure 11-10., View of Behav-
ior of the ATM System on page 246.

a. Trace these requirements to any of the eleven, 11.1 - 11.1, from Section 11.3.1, 
Assess Available Information on page 232, that were identified by analyzing the 
initial information and are parents for the ones you have written.
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b. Create any needed implied requirements. These are requirements which did 
not exist anywhere in the initial information and are not derived from any of 
them. They have no parents.

2. Create temporal requirements for the responses of the system shown in Figure 11-
10., View of Behavior of the ATM System on page 246.

3. Assign time values to the functions in Figure 11-10., View of Behavior of the ATM 
System on page 246, where that is sensible.

4. Give examples of a system and its parts at each of the tiers of design from domain 
down to component.

5. Give examples of questions which are asked and answered at each level of design 
for a power generation business.

6. Briefly analyze the newspaper business at the concept level. Develop structure and 
FFBD diagrams. List all assumed available information.

11.7 References

Rumbaugh, James; Michael Blaha, William J. Premerlani, Frederick Eddy and Will-
iam Lorensen 1991. Object-Oriented Modeling and Design, Englewood Cliffs, 
N.J.: Prentice Hall
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System Analysis
12.1 What System Analysis Is

System analysis is the study of the subject system which will be used by a business or 
businesses. The subject system may be a product, a process, a business to be re-engi-
neered, or a plan. System analysis is preceded by concept analysis which establishes 
the value of features of the subject system to the business, to its owners, and to users 
of the system. Based on the value of the features, concept analysis establishes the top 
level behavior of the subject system. That behavior captured in a model is equivalent 
to text requirements for the system. The results of concept analysis are the initial 
information for system analysis.

System analysis applies the steps of the core technical process to fully define the 
context of the subject system and then to decompose the system into it subsystems. 
The context of each sub-system is fully defined in its structure and in the excitations 
to the sub-system. The behavior of the sub-system in response to the excitations is 
defined. That behavior captured in a model is equivalent to text requirements for the 
sub-system. 

This chapter describes system analysis by continuing the example of the ATM 
system. A complete development of all of the requirements and models for all of the 
sub-systems is too large for inclusion in a book and is repetitive as an example. A rep-
resentative sub-system will be analyzed in this chapter. It will be selected to represent 
interesting aspects of modeling systems and to be familiar to many readers.

12.2 Core Steps Applied to the Context of the ATM System

Substantial information about the ATM system is developed in concept analysis and 
passed on to system analysis. Often the context description is not complete, as in this 
example. The core technical steps are applied to fully establish the context of the 
ATM system and to create the plan details for decomposing the system into sub-sys-
tems.
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12.2.1 Assess Available Information, Core Step 1
When a system is developed with concept analysis by one organization and system 
analysis by a different organization under contract, it is essential to thoroughly assess 
all of the available information. When this proceeds by legal contract, the require-
ments for the system are usually received as a large set of text statements rather than 
in executable models with accompanying text. 

When a large system is developed by a single organization, for example an auto-
mobile by an automaker, the information produced by concept analysis can be passed 
on to system analysis in executable models with accompanying text. For large sys-
tems, the information will pass from one group to another group of people. Thorough 
assessment of the models received as initial information is essential.

In this small example, the models from Chapter 11 are accepted as satisfactory 
initial information. The work proceeds to the next three concurrent steps.

12.2.2 The Three Concurrent Core Steps, 2, 3, and 4
These three steps are concurrent. The step to begin with depends upon the problem 
under study. If effectiveness measures and structure are well documented and behav-
ior is less complete, one may begin with analysis of behavior. In actual engineering 
situations the engineer will move focus among the three steps as needed. For this 
example we repeat the effectiveness measures developed in Chapter 11. and go on to 
analysis of the structure of the ATM system context, which is not yet well defined. 
When the structure of the context is more complete, we can select the portions that we 
have space to explore in this example.

12.2.3 Effectiveness Measure For Bank with the System, Core Step 2
The initial set of six effectiveness measures, EM’s, for the ATM system are repeated 
here. If others are found during modeling they will have to be added.

1.  EM1. The ATM system shall maintain correct records.

2.  EM2. The ATM system shall generate correct reports.

3.  EM3. The ATM system shall keep information secure. 

4.  EM4. The ATM system shall keep money secure. 

5. EM5. The ATM system shall operate at maximum benefit/total-cost to the 
banks it serves.

6.  EM6. Customers shall prefer to use the ATM system over the bank tellers.
254



System Analysis
12.2.4 Structure of the Context of the ATM System, Core Step 5
An initial context for the ATM system was shown in Figure 11-3., Initial Structure of 
Bank Context on page 237, and was adequate for analysis of value to the bank and to 
customers. It is missing a number of objects which will be essential for system analy-
sis. effectiveness measures EM3 and EM4 describe security. In the context there must 
be a Thief who will steal money, a Spoofer who will alter information or commit 
fraud, and organizations which will apprehend Thieves and Spoofers. Figure 12-1., 
Context of ATM System, shows the associations among these objects.

Business choices were made during Concept Analysis as to what the product 
would be and what parts of the ATM system would be leased or obtained through 
partnerships. Communication facilities are to be leased. Transaction processing and 
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report generation is to be performed by the MIS departments of Banks or by transac-
tion processing companies like First Data Corp. Branch Banks may be down sized into 
locations like supermarkets. The ATM vendor provides consulting to banks on bank 
procedures and down sizing. If such business choices are not made during concept 
analysis these objects must still be carried through the system analysis. In that case 
they may be viewed as either external systems in the context or subsystems of the 
ATM system with a deferred business issue identified and traced to them.

According to the figure, the ATM Customer has accounts with the bank and 
makes transactions. The Customer uses the ATM System which the Bank has bought. 
The ATM machine used may be local to the customers bank or located anywhere in 
the world.

The ATM System uses Leased Communications to transmit and receive informa-
tion. The activity begins at an ATM machine anywhere in the world. The combination 
of communication local and long distance networks used is not known, the networks 
handle the addresses properly. Validation of the transaction is dealt with by queries to 
an appropriate site or sites in the Bank where the bank database resides. The Leased 
Communication network also connects to the Transaction Processing Organizations 
which process transactions and prepare reports for Banks and ATM customers. There 
are two kinds of these organizations to consider: those that are Bank MIS Processing 
organizations and those that are Transaction Processing Companies. Interfaces to both 
kinds will be necessary. Several subsystems of the ATM system will likely be 
involved with the communication networks. It is premature to describe the ATM sys-
tem decomposition and those associations. They are deferred until context definition 
is complete and the System Analysis turns to the structure of the ATM system itself.

A Spoofer, this is the established name for someone who breaks into computer 
systems, defrauds the ATM system. This is detected by the Bank which reports it to 
the Justice System which prosecutes the Spoofer. Note that this portion of the context 
is compact. Its analysis leads to distributed computer security issues which are com-
plex and which have a profound impact on the computer, communications and soft-
ware details of the ATM system. Security is accomplished by design of the computer-
communication system, (Schiller 1994) and (Khanna 1993) and by use of encryption 
(Beth 1995) and (Simmons 1992). The computer-communication system design must 
also take into account issues of availability (Birman and van Renesse 1996). These 
issues are best left to the expert detail designers. Only requirements for security and 
availability are specified by the system analysis.

A Thief robs one or more customers or robs an ATM machine. The ATM system 
notifies Security and Security catches the Thief. This is a critically important part of 
the context to deal with if the system is to be acceptable to bank customers and to 
banks. It is expressed in effectiveness measure EM4.
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The Thief portion of the ATM system context is readily understood without spe-
cialized knowledge, and it leads to interesting modeling results. Accordingly, the 
remainder of this chapter will analyze this part of the context diagram. It is often very 
useful to partition large projects among teams based on loosely coupled portions of 
the context diagram, and then combine the results. In this example the partitioning is 
used to reduce the size of the example.

12.2.5 Effectiveness Measure for the ATM System Context, Core Step 2
The relevant effectiveness measure is EM4: the ATM system shall keep money 
secure. Though true and important, it cannot be verified and is unsatisfactory until 
further analysis creates derived requirements which are verifiable. The analysis con-
tinues by developing the behavior of the Thief and the ATM Customer.

12.2.6 Behavior of the Thief in the Context of the ATM System, Core Step 3
Their are two kinds of Thief, as shown in Figure 12-2., Kinds of Thief, muggers and 
cabinet crackers. Each has a characteristic behavior.

 

A plausible behavior for the cabinet cracker is shown in Figure 12-3., Behavior 
of Cabinet Cracker. We have labeled the four paths, or scenarios, through this behav-
ior.

Thief

Mugger Cabinet
Cracker

Figure 12-2.  Kinds of Thief
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A plausible behavior for the Mugger is shown in Figure Figure 12-4., View of 
Behavior of Mugger. There are two labeled paths through this behavior.

 

There is a another object in the Thief portion of the context diagram, the ATM 
Customer, whose behavior causes excitations of the ATM system. Figure 12-5., View 
of Behavior of ATM Customer, is a plausible description.
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This analysis of context has been partitioned to the Thief part of the context. 
The effectiveness measure, the structure and the associated behaviors have been 
described. At this point no trade-off between ATM system and external objects in the 
context has been found. The analysis passes over core steps 5 and 6 to examine the 
responses and the structure of the ATM system. This will lead to the definition of 
some of the subsystems of the ATM system.

12.3 Core Steps Applied to the ATM System 

We accept the models created up to this point and pass on to the three concurrent core 
steps. The first one we apply is Create the Structure Model, to create a first try at the 
structure of the ATM system.

12.3.1 Structure of the ATM System, Core Step 5
This step begins with a first try at listing the sub-systems of the ATM system in Fig-
ure 12-6., Sub-systems of ATM System. The objects included will very likely be mod-
ified as a complete analysis of the ATM system proceeds.
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First guesses are shown for the functions needed in ATM System Management, 
Installation and Field Service, and Transaction Concentrator and Router. The Transac-
tion Concentrator and Router collects transactions and queries over leased local lines 
from local ATM machines. It routes them to the appropriate network to get them to 
local and distant banks and to the transaction processing organizations. It routes trans-
action validation back to the ATM machines. These guesses must be examined by 
carefully developing the related behaviors and trying allocations onto the objects. At 
this point the listing gives an idea of what the tentative sub-systems may do.

This example is concentrating on the Thief portion of the ATM system context. 
The sub-system involved is the ATM Machine. For this example, then, we concentrate 
on the responses of the ATM machine and its needed attributes as a result of the exci-
tations defined earlier. This is a small part of the total problem.

12.3.2 Behavior of the ATM System, Core Step 3
One possible view of the behavior of the ATM System is shown in Figure 12-7., View 
of System Behavior.
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It is the behavior of the ATM Machine sub-system that is being studied because 
we have limited the scope of the example. This sub-system is interesting because the 
analysis involves responses and attributes to satisfy the ATM Customer, and another 
set of responses and attributes to thwart the Thief. 

Responses and Attributes to Thwart the Thief
There are four scenarios for the Cabinet Cracker, Figure 12-3., Behavior of Cabinet 
Cracker, and two scenarios for the Mugger, Figure 12-4., View of Behavior of Mug-
ger. We will consider them one by one.
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Scenario 1 

The Cabinet Cracker carries off the ATM Machine. This can be thwarted by making 
the machine heavy, by bolting it to the floor, and by assuring a location so that lifting 
equipment like a tow truck or fork lift cannot get close to it or get purchase on it. The 
lifting force can be specified after consultation with security experts. An initial esti-
mated budget of 4000 lbs. is made here as sufficient to prevent people from removing 
the ATM machine.

The attribute values are the arguments of equations associated with performance 
requirements and are captured in Figure 12-8., ATM Machine.

1. Requirement: The ATM Machine shall be secured such that a 4000 lb. force is 
required to remove it.

•Requirement type: Non-temporal Performance

•Attribute: Minimum Removing Force

•Associated equation: Removing force = Min Removing Force, 4000 lb.

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

2. Requirement: The ATM Machine shall be located such that lifting equipment 
cannot get close or get a purchase on it.

•Requirement type: Functional

•Attribute: Protected Location True or False

•Associated equation: Protected Location = True

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by inspection

Unfortunately these derived requirements will increase cost.

ATM Machine

Min. Removing Force: 4000 lbs.
Protected Location: T

Figure 12-8.  ATM Machine

Cost:
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Scenario 2

The cabinet cracker cuts open the ATM machine with a torch. This can be thwarted 
with a heat sensor and an alarm to the security force. If on the average it takes the 
security force fifteen minutes to respond, then the ATM cabinet must withstand cut-
ting with a torch for fifteen minutes.

3. Requirement: The ATM machine shall sense heat.

•Requirement type: Functional

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

4. Requirement: The ATM machine shall send an alarm when the cabinet temper-
ature exceeds 300 degrees Fahrenheit locally

•Requirement type: Non-temporal Performance

•Attribute: Alarm Temperature 300 degrees F

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

5. Requirement: The ATM cabinet shall withstand cutting with an oxy-acetylene 
torch for fifteen minutes or longer.

•Requirement type: Temporal Performance

•Attribute: Min. Cabinet Cutting Duration 15 minutes

•Traceability: The requirement traces to effectiveness measure EM4.

•Traceability: The time budget traces to function Cut Cabinet Open

•Validation: Validated by measurement

Scenario 3 

The cabinet cracker picks the lock. This can be thwarted by sensing the vibrations of 
picking the lock with a sensor and an alarm to the security force.

6. Requirement: The ATM cabinet shall withstand picking the lock by a trained 
locksmith for fifteen minutes or longer.

•Requirement type: Temporal Performance

•Attribute: Min. Lock Pick Duration 15 minutes

•Traceability: The requirement traces to effectiveness measure EM4.

•Traceability: The time budget traces to function Pick a Lock

•Validation: Validated by measurement
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Scenario 

The Cabinet cracker breaks open the door with clamps, drills, punches, or saws.
7. Requirement: The ATM cabinet shall withstand breaking the door by a trained 

locksmith for fifteen minutes or longer.

•Requirement type: Temporal Performance

•Attribute: Min. Door Break Duration 15 minutes

•Traceability: The requirement traces to effectiveness measure EM4.

•Traceability: The time budget traces to function Break Open

•Validation: Validated by measurement

Scenarios 3, and 4

8. Requirement: The ATM machine shall sense vibration.

•Requirement type: Functional

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by inspection

9. Requirement: The ATM machine shall send an alarm when the detected vibra-
tion level exceeds TBD.

•Requirement type: Non-temporal Performance

•Attribute: Alarm Vibration Level TBD

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

Scenarios 1,2,3, and 4 

For all of the scenarios it is necessary to notify security. The alarm needs to occur 
whether thieves attempt to cut the signal or to replace it with a generated signal. 

10. Requirement: The ATM machine shall send a tamper proof alarm to Security to 
notify that a theft is in progress when heat or vibration is detected.

•Requirement type: Functional

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

The attributes and the functions developed are collected in the graphic descrip-
tion Figure 12-9., ATM Machine Revised.
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Though this specification for the ATM machine can be implemented, everything 
added for security is contributing to cost. It is certainly a candidate for trade-off 
against lower cost solutions or against accepting higher risk of theft.

Scenarios 5 and 6 

These are the scenarios for the Mugger. For these scenarios the important effective-
ness measures are EM4. used above and EM6: customers shall prefer to use the ATM 
system over the bank tellers. Customers will not use ATM machines unless they feel 
safe from muggers. In these scenarios the Mugger sees an ATM customer using a 
machine and either takes the withdrawn from her, or the Mugger takes over the 
machine and withdraws money. In either case the ATM Customer is threatened with 
violence and may be injured. Cameras and emergency buttons can be built into the 
machines. However, these devices will only ensure that help arrives more quickly to 
take the patron to a hospital. There is nothing that can be built into the ATM Machine 
itself to prevent mugging.

12.3.3 Structure Implications of the Theft Scenarios, Core Step 4
The machines can be placed in safe locations which are know to be free of mugging 
incidents. This suggests thinking about all of the possible kinds of secure locations. 
Figure Figure 12-10., Classification of Secure Locations shows the result of such cre-
ative thinking. Modeling only captures the results of the thinking.

ATM Machine

Min. Lifting Force: 4000 lbs.
Protected Location: T
Alarm Temperature: 300 degrees F
Min. Cabinet Cutting Duration: 15 minutes
Min. Lock Pick Duration: 15 minutes
Min. Door Break Duration: 15 minutes
Alarm Vibration Level: TBD

Sense Heat
Sense Vibration
Send Alarm to Security

Cost

Figure 12-9.  ATM Machine Revised
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In the context of ATM system there are locations which can be used to house the ATM 
machines and provide them with electric power and connection to communications. 
Some locations are secure and some insecure. For any given location this can be estab-
lished by survey of people who are familiar with the locations. Among the secure 
locations there are two very interesting kinds:

1. Locations that have a cashier and cash present

2. Locations that do not have cash and a cashier present

If cash and a cashier are already present, then it is not necessary for the ATM 
machine to dispense money. Instead it can dispense a receipt for which the cashier 
gives the ATM Customer the money. In some cities and areas there may be no loca-
tions with these characteristics. In some cities and areas retail stores, drug stores and 
convenience stores can serve this function.

This alternative is different kind of allocation of behavior than has been 
described before in this example. It is an allocation of the function “dispense money” 
away from the ATM system and into the external objects in the context. In Figure 11-
11., Kinds of ATM Machines on page 248, the assumption was made that all of the 
ATM machines would dispense money withdrawn from either checking or savings 
accounts. This allocation into the context totally relieves the ATM system for respon-
sibility for the physical security of the money and risk to the customer. It also drasti-
cally reduces the cost of the ATM machine which now does not need a money 
dispenser, protection from theft, or a repository for deposits. Deposits can be left with 
the cashier.

Many potential retail locations of this type are located close to the ATM custom-
ers and these retailers benefit from customers with money in their stores at their cash 
registers. For this solution to the system problem there are a few additional consider-

Insecure

No Cashier With
Cash Present

Cashier With
Cash Present

Secure

Location
(External 
System)

Figure 12-10.  Classification of Secure Loca-
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ations. It is necessary to print a random number on the receipt and to display that 
number at the register so that fraudulent receipts cannot be presented. It is necessary 
to arrange for the transaction to be cancelled if the retail store is temporarily short of 
funds and cannot honor the receipt. These restrictions can be readily incorporated into 
the requirements and represented in the models. These considerations cause a redefi-
nition of the types of ATM Machines, shown in Figure 12-11., Kinds of ATM 
Machines, Modified.

The parent class, ATM Machine, shows all the functions common to the ATM 
machines and the cost of these capabilities.

ATM Machine
Total Withdraw Cost

Money Dispensing Machine

Execute Withdraw form Checking
Execute Withdraw from Savings

Money & Deposit Machine
Total Dispense & Deposit Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment

Bank Transaction Machine
Total Transactions Cost

Execute Apply for Account
Execute Borrow Money
Execute Make Investment
Execute Sell Investment
Execute Cash Savings Bonds
Execute Wire Funds
Execute Get Cashier Check
Execute Get Money Order
Execute Get Investment Data 

Figure 12-11.  Kinds of ATM Machines, Modified

Dispense Receipt

Accept & Store Deposits

Dispense Money

Total Dispense Cost

Receipt Only Machine
Total Receipt Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment
Print Random No. on Receipt
Display No. @ Cashier
Cancel Transaction

Store Location

Supply Power
Supply Communication Port
Accept & Store Deposit
Dispense Money
Cancel Random No. @ Cashier
Cancel Transaction

located in

1+

Read ATM Card
Read Pin Number
Validate Transaction

Theft Protected: Y/N, Cost 

Theft Protected: Y/N, Cost
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 The Money & Deposit Machine dispenses money and stores deposits. It may or 
may not be protected for theft, depending on location. When these machines are 
located inside bank lobbies they do not require the protection of machines located out-
side or in unsafe buildings.

The Receipt Only Machine provides all of the functions of the Money and 
Deposit Machine because of the cooperative arrangement with the Store Location. An 
element left unclear is whether the transport of deposits from store to bank will be 
done by the ATM Installation and Field Service sub-system or by the Store when store 
receipts are taken to the bank. That issue is flagged but not analyzed until Installation 
and Field Service and associated behaviors are analyzed.

The Money Dispensing Machine does not have a repository for deposits. It may 
or may not be protected from theft, depending on location.

The Bank Transaction Machine is a customer workstation for bank transactions 
of all kinds. When a business like this is starting, the Bank Transaction Machine is a 
future release. Such releases often need a trial in a bank to prove their effectiveness. 
The cost effectiveness is not clear from the analysis of benefit to the bank. Widespread 
introduction may await introduction and acceptance of electronic banking.

Clearly this is a product line of ATM machines. The alternatives provide a basis 
for consulting with banks not only on their internal procedures, but also on tailoring 
the distribution of ATM machines and types to the communities and customer popula-
tions they serve. Ability to locate low cost Receipt Only Machines in cooperating 
stores can be an asset for the ATM system vendor with appropriate business relation-
ships with store chains. 

All of these results are the result of analyzing responses to the Thief. The 
responses of the ATM machine to the ATM customer are described next.

12.3.4 Response of ATM Machine to ATM Customer
The behavior of the ATM Machine is a response to the behavior of the ATM Cus-
tomer, Figure 12-5., View of Behavior of ATM Customer. Within that response are 
some issues that transcend the ATM Machine sub-system and the theft scenarios. The 
ATM Machine is involved in the validation of the transactions to ensure that the card 
and password are valid and that accounts have funds adequate for withdrawal. The 
actual validation can take place in the ATM Machine or in a remote location. These 
alternatives affect the amount of time the Customer must wait for validation, the 
amount of use of communications, and the security of the information. Validation 
involves the Spoofer and the Network portions of the context diagram. The validation 
issues need to be examined from all of these perspectives. For brevity this example 
will only consider the problem from the standpoint of the ATM Customer and the 
ATM Machine, which are parts of the Theft portion of the context under study for the 
example.
268



System Analysis
Figure 12-12., Behavior of ATM Machine, shows a plausible response to the 
ATM Customer.

.

When the ATM machine is turned on it first Initializes. It then displays start 
instructions for the Customer. When the Card is swiped by the Customer the ATM 
Machine reads the card. It the reading produces good data, the behavior continues. If 
the data is bad, the ATM machine displays a message to re-swipe the card. When 
good data is obtained it prompts the user for password information. A password is 
entered by the customer and captured. The password can be quickly checked locally 

Display Start
Instructions

Initialize
ATM

Read
Card

Validate
Data

Display
Password

Print
Receipt

Validate
Transaction

Capture
Password

Display
Re-swipe
Instruction

good

bad

Instruction

Request
Validation
& Account

Display
Transaction
Selection

Information

Receive
Validation
& Account

Capture
Transaction
Selection

Information

Prompt
Additional
Info

And

Complete
Transaction

Display
Completion
Information

Receive
Completion
Choices

stop

Display
Re-peat
Password

bad

good

Card Password

Request

Choices

Figure 12-12.  Behavior of ATM Machine
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with a check sum if the card number and password have been properly established. If 
the password is bad, the ATM Machine displays a repeat password message. If it is 
good the behavior continues with two concurrent branches. 

On the upper branch the ATM Machine requests information over the network 
for password verification, card verification, and account balances. There will be a time 
lag after which the requested information is received by the ATM Machine. During 
this time lag activity proceeds along the lower branch. The transaction selection is dis-
played to the customer. The customer selects a transaction type. The selection of trans-
action amount is displayed and the Customer inputs the amount chosen. The 
overlapping of the two branches minimizes waiting time for the customer. Requesting 
and receiving the information needed concerning the card, password, and account bal-
ances in a single burst minimizes both time delay and communication use. However, 
for security reasons it may be undesirable to transmit account information back to the 
ATM Machine.

When both branches are complete there is enough information to Validate the 
transaction. If the transaction is approved the process continues. If not, it cycles back 
to the front of the two branches to attempt to match a transaction against the accounts. 

If the transaction was allowed, a receipt for the transaction is printed. If the 
machine is of the Receipt Only type the receipt is taken to the cashier who matches the 
printed random number against the displayed number at the register. The cashier pays 
the withdrawn amount and enters the completion choices of completed and stop. The 
ATM Machine signals a completed transaction to the system If the cashier is out of 
cash and cannot honor the receipt, he enters not completed and stop. The transaction is 
aborted and not recorded by the system.

If the ATM Machine is of the other types, then the ATM customer enters her 
completion choices and may stop or continue with additional transactions. When fin-
ished, the stop command is entered and the ATM machine displays the start instruc-
tions.

The plausible behavior just described has considered only a few of the anoma-
lous conditions that can occur. Each step in the behavior needs to be examined for 
desired behavior of the ATM machine under all possible conditions (Carson 1995). 
For example, what happens at any step if the customer walks away from the machine? 
Does it time out and return to displaying start instructions. What happens at any point 
if the ATM customer wants to quit or back up to a previous step?

Each of the steps requires further detailed design of the displays to be presented 
and the data to be processed. These details are developed as the ATM Machine is bro-
ken into its components. There are three kinds of ATM machines to consider: Receipt 
Only, Money Dispensing, and Money and Deposit machines. It would be useful to 
develop them so that they share and reuse a maximum number of parts.
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12.3.5 Structure of the ATM Machine and Related Objects, Core Step 5
The development of behaviors has introduced a number of additional objects 

which are not a part of the ATM Machine, but are associated with it. Figure 12-13., 
Associations with ATM Machine, shows these associations Models like this figure 
treat all of the objects on an equal footing in showing the relationships among them. 
They are particularly useful in organizing information about the system because 
information about each of these objects may be important to record. They are often 
referred to as information models.
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This representation asserts that the ATM customer has accounts, defines transac-
tions, uses an ATM card issued by the bank, enters instructions, requests access with a 
password, gets receipts, withdraws cash from an account, makes deposits to an 
account, and reads information displays. It asserts that the ATM System uses the 
money supply provided by the bank, reads the ATM card, follows the instructions, 
accepts or rejects the password, produces receipts, dispenses cash from an account, 
stores deposits to an account, creates information displays, draws support from a loca-
tion, receives replies, makes requests, captures transactions, and generates messages 
describing the transactions.

The figure asserts that a network transports messages, receives requests, and 
sends replies. Because we do not know the structure of the network, It asserts that 
there are three inclusive classes of networks: ATM Network, International Network, 
and Bank Network. The Bank Network connects to an appropriate bank computer 
which reads and writes to a bank database which contains accounts in which are 
recorded the account transactions. The bank database and also stores ATM data 
including the information needed for validating card numbers and passwords. The 
physical locations and structure of the computers, networks, and data storage media 
are in general not known. Their identities and routing addresses are known or are 
found by reading appropriate files.

Models such as this are very useful in defining all of the objects with which the 
ATM Machine interfaces. When database engineers are organizing the information 
that describes all of the objects in the system, the information models provide a basis 
for organization of the data. When created with an executable notation, database 
schema can be generated from the information models. This is one of the intimate 
relationships between the detailed description of the system needed for specification 
and database development.

This example has examined only one of the several subsystems of the ATM sys-
tem. Some of these other sub-systems, especially Installation and Field Service will 
interface with the ATM machines and have a major impact on their operating cost. 
That information comes from study of the other sub-systems and can be included in 
the models when it is available. 

12.4 Exercises

1. Create a behavior for the ATM Machine in response to the scenarios for the Thief.

2. Create a behavior for the response of Security to an alarm from the ATM Machine.

3. Link the composite behavior of Thief with the behaviors of the ATM Machine and 
Security. Create a time line for the interaction of the three objects.

4. Define a behavior for Installation and Field Service that will:

a.  Install the machines
272



System Analysis
b.  Supply money to ATM Machines

c.  Retrieve deposits from ATM Machines

d.  Respond to out- of - service calls

e.  Proactively test ATM Machines using remote diagnostics

f.  Service broken ATM Machines

g.  Repair and sell ATM Machines

h.  Estimate the cost per machine for these services

i.  Schedule installation and field service

5. Estimate the cost to provide each service

6. Make a rough estimate of the cost of manufacturing each of the three kinds of 
ATM Machines. Add the cost of the services required for each kind of machine.

7. For a local bank with twenty branches decide what numbers of the different kinds 
of ATM machines you would distribute in the community. What assumptions do 
you have to make?

8. Think of a set of rules or an algorithm for locating ATM machines.

9. Develop a system level analysis of an electronic cash register.

10. What is the output of system level analysis? What questions does it answer?
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Sub-system Analysis
13.1 What Sub-system Analysis Is

Sub-system Analysis is the study of the sub-systems of the subject system which will 
be used by a business or businesses. The sub-system may have its own effectiveness 
measures, design constraints, and architecture which differ from those of the system. 
Sub-system Analysis is preceded by analysis of the system tier from which it receives 
the context for each sub-system. The structure model of the context describes all of 
the objects with interfaces to the sub-system. The behavior models for the context 
describe the behaviors of all the objects with interfaces to the sub-system. A behavior 
model for the sub-system describes how it responds to the excitations it receives from 
the objects in its context. 

Sub-system Analysis applies the core technical steps to review and validate the 
context information received from analysis of the system tier. This review is needed 
to find and correct errors and missing information in the models received. It is neces-
sary for large systems because it will decompose into six or more sub-systems with an 
engineering team assigned to each sub-system. These teams need to review and apply 
their collective experience to refine the models developed by the analysis of the sys-
tem tier team. Since the sub-systems interact, the teams need to review with one 
another the interactions among their subsystems.

When the context models have been corrected and accepted, each team applies 
the core technical steps to its sub-system. Each sub-system is decomposed into its 
components by allocating the behavior of the sub-system onto trial sets of compo-
nents. This process defines the context of the component statically and dynamically. 
The behavior of each component is refined as a response to all of the excitations it 
receives. 

This chapter describes Sub-system Analysis by continuing the example of the 
ATM system. A complete development of all of the requirements and models for all 
of the sub-systems is too large for inclusion in a book and is repetitive as an example. 
Analysis of the ATM Machine will be continue in this chapter. The analysis will be 
carried to the specification of the components.
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13.2 Core Steps Applied to the Context of the ATM Machine 

Substantial information about the ATM machine was developed in analysis of the sys-
tem tier in Chapters 11 and 12. and is accepted for use here. However, only one part of 
the system context was explored during analysis of the system tier so that the only 
sub-system definitions and models that emerged were for the ATM Machine. Models 
for the response of the ATM Machine to the Thief were left as an exercise for the 
reader as was the behavior of Security. The impact of analysis of the Installation and 
Field Service sub-system was left as an exercise. Models are presented here for 
response to the Thief, behavior of Security, and impact of analysis of field service on 
the ATM Machine. This is done without performing analysis or trade-off to optimize 
the content of the models.

Overall View of System Behavior
Figure 13-1., View of System Behavior defines top level behavior.
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Figure 13-1.  View of System Behavior
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Response to Thief
Figure 13-2., View of Response of ATM Machine to Thief, is a view of the ATM 
Machine behavior in response to the Thief Scenarios. Details of the tamper proof 
alarm signalling are contained in the function Send Alarm and require detailed 
design.

Impact of Installation and Field Service
Results are assumed here for the analysis of installation and field service without 
going through analysis of the system tier and trade-off. They may or may not be near 
optimal. The distribution of machines locally is assumed to be:

• Three Money and Deposit Machines with alarms in the drive through outside 
the Local Bank; and one outside each of two Branch Banks. Five total.

• One Money and Deposit Machine without alarm and protection inside the 
Local Bank, the two Branch Banks, and the eight Supermarket Banks. Eleven 
total.

• One hundred Receipt Only Machines in 100 Convenient Store locations serv-
ing the local area. One hundred total.

With this distribution collection of deposits, supply of money, and supply of tape for 
the printers is handled by regular bank personnel and convenient store personnel. 
Installation and Field Service is organized regionally with responsibility for about 
2000 machines for the 10 local banks in the region. Mean time between failures, 
MTBF, is required to be:

• Receipt Only Machines, MTBF = 5 year/failure, 400 failures/yr. regionally

• Money and Deposit Machines, both kinds, MTBF = 1.0 year/failure. 150 fail-
ures/yr. regionally
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Figure 13-2.  View of Response of ATM Machine to Thief
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The cash dispenser is expected to be both expensive and less reliable than many 
of the other components, so MTBF is less for the Money and Deposit Machine than 
for the Receipt Only Machine. The failures are evaluated with remote execution of 
diagnostics. Failures of the Receipt Only Machine are serviced by having regular bank 
personnel replace the entire unit and by initializing and validating its performance 
remotely over the network. For each region two service persons handle the failures. 
Such procedures limit field service personnel to about 20 persons for the system. Only 
when the impact of a service structure such as this has been considered, can the oper-
ating cost of the different machines be ascertained. As the machine reliability goes up 
the cost of servicing goes down but cost of manufacture goes up. A full trade-off of 
theses alternatives is required in analysis of the system tier. The solution above is 
applied in this chapter. It provides operating cost information for the ATM Machines 
and sets goals for their MTBF and reliability. For a thorough discussion of MTBF, 
reliability, availability, and for specifying all reliability concerns a good text on that 
subject should be consulted (Blanchard and Fabrycky 1990, Chapter 13).

13.3 Core Steps Applied to the ATM Machine 

13.3.1 Effectiveness Measure for the ATM machine, Core Step 2
The initial set of six effectiveness measures, EM’s, for the ATM system are repeated 
here. If others are found during modeling they will have to be added.

1.  EM1. The ATM system shall maintain correct records.

2. EM2. The ATM system shall generate correct reports. EM1. and EM2. require 
that the ATM Machine shall:

 Interpret instructions correctly

 Read cards correctly

 Request information correctly

 Interpret replies correctly

 Validate passwords correctly 

 Validate transactions correctly

 Reject bad data

 Continue properly after receiving bad data

3.  EM3. The ATM system shall keep information secure. 

The analysis of the system tier to apply EM3. to the ATM Machine has not been car-
ried out in the example. There is insufficient information to apply EM3.

4.  EM4. The ATM system shall keep money secure. EM4. applies directly to the 
ATM Machine
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5.  EM5. The ATM system shall operate at maximum benefit/total-cost to the 
banks it serves. Some guesses about Installation and Field Service have been 
made to provide rough guidance in operating cost and ATM Machine MTBF.

6.  EM6. Customers shall prefer to use the ATM system over the bank tellers.

Based on system considerations, machines have been located for customer conve-
nience. Locations have been selected to allay anxiety over personal safety. MTBF has 
been made sufficiently long that a customer should experience no machines out of 
order in more than a year of using near by machines.

Ease of use and understanding must be designed into the ATM Machine. This 
design work is an engineering discipline, generally called Design for Manability and 
Human Factors Analysis. Good discussions of the discipline are available, (Blan-
chard and Fabrycky 1990, Chapter 15) and (Woodson 1981). The ultimate issue is not 
the design, but the evaluation of the design by users. This can be done with a proto-
type and a users survey with the prototype. When the specifications are captured in 
executable models, the prototype can be rapidly generated by automatically trans-
forming the specifications into code and adding the details, like screen layouts, which 
were deferred to the designers. A set of criteria, like those below, are needed to evalu-
ate user reaction to the prototype. 

•  Based on a valid survey 80% of participants on their first use shall:

•  Find the information displays self explanatory
•  Follow the sequence of user actions successfully
•  Make their choices without error
•  Complete their transactions
•  Express satisfaction in using the ATM machine 

This is a specific example of early build and validate.

13.3.2 Structure of the ATM Machines, Core Step 5
It is not a single ATM Machine under study, but a family of them. The decomposition 
of the machines into their components is needed. In addition there will be associa-
tions among the family members that show how parts are reused among them. These 
are the associations that will cause the designers to ensure parts are designed for 
reuse. 

There are four basic ATM machines under consideration and two of these may 
be either designed for theft protection or not, yielding six kinds of machines as shown 
in Figure 13-3., Kinds of ATM Machines, Modified. Protection attributes and func-
tions are shown through multiple inheritance using the Protected ATM Machine class.
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.

There is an equation for the cost of any of these machines:

ATM Machine
Total Withdraw Cost

Money Dispensing Machine

Execute Withdraw form Checking
Execute Withdraw from Savings

Money & Deposit Machine
Total Dispense & Deposit Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment

Bank Transaction Machine
Total Transactions Cost

Execute Apply for Account
Execute Borrow Money
Execute Make Investment
Execute Sell Investment
Execute Cash Savings Bonds
Execute Wire Funds
Execute Get Cashier Check
Execute Get Money Order
Execute Get Investment Data 

Dispense Receipt

Accept & Store Deposits

Dispense Money

Total Dispense Cost
Receipt Only Machine
Total Receipt Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment
Print Random No. on Receipt
Display No. @ Cashier
Cancel Transaction

Store Location

Supply Power
Supply Communication Port
Accept & Store Deposit
Dispense Money
Cancel Random No. @ Cashier
Cancel Transaction

located in

1+

Read ATM Card
Read Pin Number
Validate Transaction

Theft Protected: Y/N 
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Figure 13-3.  Kinds of ATM Machines, Modified
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• Total cost = withdrawal cost + installation cost + servicing cost + maintenance 
cost + manufacturing cost + operating cost + security cost +/- location cost/
payment. 

A cost/payment attribute has been associated with the Store Location. Having 
store locations for receipt on ATM machines is a matter of a business arrangement 
with chains of stores like convenience stores. The work to negotiate such agreements 
is planned and scheduled in the Build and Test Plan. The negotiation may result in 
rental payments to the convenient store chain, or in payments by the store chain to the 
bank for having the attraction of banking in its stores. This part of the planning would 
normally be developed during Concept Analysis, the discussion of Chapter 11. As 
this example has been developed, the opportunity for supplying Receipt Only ATM 
machines is not discovered until later, during sub-analysis of the system tier. It 
becomes an issue requiring resolution by revisiting the Build and Test Plan developed 
in Concept Analysis and modifying the implementation planning from those earlier 
steps to include development of new business relationships, implementation of an 
unanticipated class of machine, and modification to field service plans and imple-
mentation. This is an example which requires change control as discoveries are made 
during engineering to synchronize the planned ongoing work with the impact of the 
discovery. 

Figure 13-4., ATM Machines, Parts List and Associations, shows the composi-
tion of the machines and how they are interrelated for reuse of parts and field service. 
The Receipt Only Machine is built from a Receipt Machine LRU, Least Replaceable 
Unit, and a Cashier Display LRU. If one of these machines fails, the LRU’s are what 
is replaced in the convenience store, as a unit. All of the other four kinds of ATM 
machines use the Receipt Machine LRU, secured into their cabinets, for display, com-
putation, network interface, receipt printing, and diagnostics. This minimizes stock-
ing of different parts, and maximizes production runs. Each of the machines has its 
own cabinet; the cabinet classes are shown with light shading. The cabinets for the 
theft protected machines will be expensive and used only where necessary. All four 
machines that dispense money use the same Money Dispenser LRU. In Figure 12.4 
that class is shown twice and is shaded dark so that the reader does not have to deal 
with lines crossing in the figure. (Some tools do not allow the repetition of a class this 
way and the tool tracks crossing association connections without confusion). The pro-
tected machines use the same Theft Correction LRU.
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The Receipt Machine LRU, which is used in all of the kinds of ATM Machines, 
is built from a power supply, network interface, card reader, circuit board, display unit, 
printer and cabinet. These seven items are second level LRU’s. They are replacement 
units when a Receipt Machine LRU is taken to a repair facility for repair. The circuit 
board, cabinet, and software will likely require engineering development. The other 
items can likely be procured from suppliers. The display/input unit may have to be tai-
lored to this product by a vendor. The aggregations in Figure 13-4., ATM Machines, 
Parts List and Associations, capture not only the parts lists for each kind of ATM 
Machine, but also the reuse architecture of the products. The models capture the engi-
neering creativity in finding a good reuse architecture. 
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Sub-system Analysis
Both protected machines use the same Theft Protection LRU shown in Figure 
13-5., Theft Protection LRU. The network control and alarm generation are handled 
by the Receipt Machine Circuit Board which contains the computer and software. 
Much of the system complexity and response behavior to both the Thief and the ATM 
Customer is captured in the software.

Attributes and Allocation of Behavior
The parts list needs to be augmented with attribute values, and with interconnection 
diagrams. The attributes are examined first at 2nd LRU level, LRU level, and then at 
ATM Receipt Machine level. A reasonable set of values are given for cost and for 
MTBF design goals.

The behavior of the ATM Receipt Machine is allocated to the parts. Figure 13-
6., The Components as Objects with Attributes and Functions, shows the components 
with their attribute values, design goals at this stage, and functions. Based on the cost 
attributes the Receipt Machine has a cost goal of $1030.
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2nd LRU

Protection
Theft

LRU

Detector
Noise

2nd LRU
Signal
Analog

Conditioning
2nd LRU

Figure 13-5.  Theft Protection LRU
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.

The Receipt Machine fails if any of these components fails. Under these condi-
tions the reciprocal of the total MTBF is equal to the sum of the reciprocal MTBF’s of 
the components. (Blanchard and Fabrycky 1990, 355) The Receipt Machine MTBF is 
5.6 years. The MTBF’s assumed are quite long and would require conservatively 
designed integrated circuits, very high quality electrical connectors on the cabinet, and 
a very high quality printer. Printer life in years is dependent on the number of receipts 
printed in that time because failure is a result of mechanical wear. The assumption 
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Figure 13-6.  The Components as Objects with Attributes and Func-
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above corresponds to about a million receipts between failures. The number of field 
service personnel and the cost of field service are predicated on the machine reliabil-
ity.

Figure 13-7., LRU Objects, shows the functions and attributes of the Least 
Replaceable Units.

.

The attributes simply sum up the parts tree. The cost to manufacture adds. MTBF fol-
lows a sum of reciprocals law. When the parts tree is captured in a tool, the summa-
tions readily automated. This can be done with a modeling tool that captures all of the 
models or with a spread sheet. 

When the attributes are summed to the ATM Machines the results of Figure 13-
8., The Five ATM Machines, are obtained

Protected Dispenser Cabinet
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House Components
Connect Electrical Components 
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Figure 13-7.   LRU Objects
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.

Hardware Interconnection
When the behavior has been defined as done here, the allocation of functions to com-
ponents establishes many of the interconnections, those between active objects that 
exchange input/outputs. Figure 13-9., Interconnection Diagram, shows the interfaces.
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Figure 13-8.  The Five ATM Machines
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Software Components
The software components are developed in the next chapter as an example of the 
hand-off from systems engineering to software engineering and the design of compo-
nents based on system models. A hand-off of this nature may occur in any of the tiers 
of development when a system, subsystem, or component is to be supplied by a busi-
ness partner or a supplier company.

13.4 Exercises

1. Analyze installation and field service for the ATM Machines

a. Apply the six core steps to the analysis

b. Compare results with the assumed results in Chapter 13.

2. Model the subsystems of a computer

a. are these all produced by a single vendor?

b. which systems will be designed more fully by the computer manufacturer? 
Why?

3. Model the subsystems of a hospital and their relationship to each other.

4. Consider a communications systems provider. Is the information needed by the 
provider about a satellite the same as the information needed by the satellite manu-
facturer?

5. In what roles is a satellite viewed by

a. antenna designers

b. communications vendors

c. rocket launchers

d. the military

e. satellite manufacturers

13.5 References
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Hand-off
14.1 What Hand-off Is

The hand-off is the transition between the system design work and the design work 
performed by individual engineering disciplines, or by suppliers. The systems engi-
neering information, specification, developed at the higher tiers must be delivered to 
the specialty engineers in an rigorous and understandable format. The disciplines 
must also be able to feed information back into the systems engineering domain so 
that estimates of total system performance can be refined as parts of the design are 
worked through to implementation

Within the design process for large systems hand-off occurs at different tiers of 
hierarchy. Business rarely decides to attempt to develop all of the components of a 
major system. Out sourcing is a prominent aspect of modern system development. 
Instead businesses choose certain aspects of the system design in which they will spe-
cialize. These aspects of the system design will be pursued further than those aspects 
which are contracted to suppliers, purchased from vendors or provided by business 
partners. It may be a system, subsystem or component that is developed and supplied 
externally. The outside vendors, suppliers, and partners need to do the same rigorous 
engineering as the initiating engineering organization, but they receive system engi-
neering information and specifications as a hand-off from the initiating engineering 
organization.

Considering the case of the ATM system, many of the hardware elements are 
likely to be sourced from external vendors. It would be unrealistic to assume that the 
display unit LRU or the uninterruptible power supply LRU are going to be developed 
by the same company that is developing the ATM system. The engineering skill and 
knowledge required by these tasks is too disparate. These are also components which 
are readily available in the commercial marketplace making it hard to develop them 
internally with cost competitiveness.

It is more likely that the developer of the ATM system will choose to design the 
software which drives the system and the cabinetry which houses the ATM machine. 
Each of these are not already available in the marketplace. Each also offers the com-
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pany the potential for providing a discriminator that will enhance one or more of the 
effectiveness measures. In every system designed, the companies must make similar 
choices about the scope of their expertise and at what level hand-off should occur. 

For the sourced components then, hand-off occurs at component tier. For the net-
work sub-system and the back-end information processing system, other businesses 
supply entire sub-systems at the sub-system tier. For the components that are devel-
oped internally several more tiers of design can occur before hand-off occurs. Even 
when the components are sourced, companies are starting to move away from a hand-
off based primarily on text shipped to a different organization. Instead the system team 
contains members from all of the organizations involved and from all of the disci-
plines. Design information, including models, is shared among teams that cross both 
organizational and discipline boundaries. This has the predictable result of reduced 
errors and miscommunication and a higher likelihood of maximizing the effectiveness 
measures.

This chapter focuses on the hand-off between the systems engineering discipline 
and the speciality disciplines which will design and specify the low level components 
from which the system will be composed. It also discusses some of the continuing 
coordination needs between the systems engineers and the specialty engineers.

Two handoffs are studied in this chapter, each to a software discipline. The hand-
off to database engineering and to user interface engineering will each be examined. 
Before we can look at the handoff, however, we need to take the subsystems down 
another level of design. This level will establish the appropriate context for handing 
off the design.

14.2 Context For Handoff 

In the previous chapter we already followed an example of the core technical process 
applied to the subsystems context. Rather than repeat that here we simply present the 
models of the ATM design taken to the next level of detail.
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Figure 14-1., Structure Diagram for ATM Software Architecture divides the 
ATM into three major structural portions with a few supporting pieces. 

Figure 14-2., View of ATM Machine Software Behavior gives the behavioral 
description of the ATM machine’s software. The main allocation of requirements and 
functions in this behavior lie within the normal, maintenance, and testing operations. 
The hand-off to the engineers in charge of the user interface and database pieces will 
be examined in the context of the normal operation block. In actual design, of course, 
these pieces need to be specified and handed-off for all phases of operation.
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Figure 14-1.  Structure Diagram for ATM Software Architecture
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14.3 ATM Handoff to User Interface

A fair amount of information about the user interface has already been specified in the 
earlier tiers of design development. In any reasonable sized software system the user 
interface design and implementation will have far reaching consequences for the 
development of the rest of the system. 50% to 80% of the total software in many large 
projects is dedicated to driving the user interface (Brown 1988). 

This being the case it is extremely important that the user interface be handled 
with special care. It can not be considered as an afterthought, something to through 
together after the “real” system is designed and built. If we revisit the behavior for the 
ATM from chapter 12 and look at how many of the behavior elements involve the user 
interface we see that well over half of the behavior is directly affected by the interface. 
Figure 14-3., User Interface Related Behavior of ATM Machine. shows this by shad-
ing the elements of the behavior which affect the user interface. Whatever choices are 
made in designing the user interface are likely, therefore, to directly impact many of 
the other components of the systems. 
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14.3.1 Assess Available Information
As with the other levels of detail, at separation a similar core process is applied. We 
begin, once again, by gathering all of the relevant available information. We start with 
the models developed thus far. 

Models
Figure 14-3., User Interface Related Behavior of ATM Machine. provides the execut-
able specification for the behavior needed from the User Interface. 

A final decision has not yet been made about what transactions are too be offered 
through the ATM network (see Figure 11-10., View of Behavior of the ATM System on 
page 246),  and the ensuing discussion lead to an initial set of transactions to imple-
ment. The analysis in making this decision highlights the possibility that it will change 
as the system evolves, perhaps not in the initial implementation, but as a evolutionary 
growth of the system. The impact that this has on the user interface and other compo-
nents is to decide to use a flexible approach which can accommodate requirement 
changes of this sort easily. 

Scenarios of ATM usage can be derived from looking at the behavior of the bank 
customer, as shown in Figure 12-5., View of Behavior of ATM Customer. 

Effectiveness Measures
Some of the effectiveness measures are relevant to the UI, in particular is EM6. “Cus-
tomers shall prefer to use the ATM system over the bank tellers.” This measure is in 
part addressed by the physical locations of machines within the ATM system. New 
effectiveness measures were developed at the previous tier of design which translate 
the original measure into rigorous and verifiable effectiveness measures for the User 
Interface. These are:

•  Based on a valid survey 80% of participants on their first use shall:

•  Find the information displays self explanatory
•  Follow the sequence of user actions successfully
•  Make their choices without error
•  Complete their transactions
•  Express satisfaction in using the ATM machine

Domain Knowledge
Especially at hand-off “new” information becomes available. This new information 
comes in the form of professional experience and education of engineers skilled in a 
particular discipline. 

When the design is handed over from one discipline to another, often necessary 
changes to the design or requirements are quickly identified. In this case a requirement 
to adhere to the Americans with Disabilities Act, ADA, is well known by the Human 
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Factors community. This places new constraints on the way the ATM User Interface 
is designed. For instance, the interface may be required to be Braille-equipped. For 
the purposes of this example we will ignore this new requirement to keep the example 
simple. The way to manage changes such as this with a change adjudication process 
are discussed elsewhere. Coming out of the change adjudication process will be the 
accepted set of available information. The three parallel core steps can now be pur-
sued.

14.3.2 Parallel Design Steps
In the core process the parallel design steps are: 

1. Define Effectiveness Measures

2. Create Behavior Model, and

3. Create Structure Model. 

Similar design work occurs in separation but the design steps begin to change so 
as to transition the information into the form needed by the specialty engineering 
groups. 

For the user interface one of the additional models that needs to be developed is 
the user’s mental model (McGraw 1992). This model extends the customer model 
developed in the earlier tiers. The customer models developed so far tell how the cus-
tomer behaves, what responses are desired from the customer and what stimulations 
are given to the customer. These are termed the behaviors in systems engineering 
terms or work processes in user interface terms. They also include the structure of the 
ATM machine context as it relates to the user. Human factors engineering must take 
into account these work processes and structure but must augment them with the 
mental model of how the users views the world. If the end design of the user interface 
is not consistent with the users’ mental models then additional training must be 
planned to introduce the concept of operation. For the ATM, example the effective-
ness measures require that the user interface design match the users’ mental models 
in order to meet EM6. EM6 states that 80% of users will successfully use the ATM on 
their first attempt, thus no training time is provided for.

In the case of the ATM the mental model is fairly easy to discern. The behaviors 
expected of the ATM user are the same as the existing behaviors of the same user at a 
bank teller window. Only the actual mechanics of the transaction change. From the 
user interface design standpoint, one of the challenges is to match the user interface to 
the process of an actual bank teller. Other parts of the mental model of the users con-
cern the degree of computer experience expected. Since this is to be deployed for the 
general public a relatively low experience base is assumed. Users’ will be assumed to 
have experience with calculators and simple push-button interfaces. We must not 
neglect smaller percentage of computer literate users. They could be turned off by an 
interface that is overly “user friendly.” 
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With this all in mind we begin to develop the more detailed behavior of the user 
interface. Figure 14-4., Behavior of Display Start Instruction gives a behavior for the 
first piece of the user interface. This behavior takes into account the possibility that 
the ATM may have a failure of some sort and need to display a message different from 
the normal message. It also provides a looping mechanism to output more information 
than can fit on a single screen. 

.

Similar lower level behaviors need to be developed for each of the user interface 
related blocks in Figure 14-3., User Interface Related Behavior of ATM Machine. on 
page 293.

In parallel with the development of the behaviors the structure of the user inter-
face needs to be developed Figure 14-5., Structure of User Interface Components 
gives the OMT diagram of the user interface. It consists primarily of the input buttons, 
the output windows for the screen, and the controller class. The input devices are bro-
ken into two subclasses since it is likely that they will be sourced as separate items. 
The output areas are similarly subclassed. Here the distinction between the subclasses 
is not physical. They will each be rendered on the same physical display device. The 
difference is semantic, with each window class performing a different role in the logi-
cal design of the user interface. These two class hierarchies are associated by an inter-
face controller class. A great deal of the behavior is mapped onto this controller class. 
OMT diagrams with this general format are relatively common for single tasking user 
interfaces. This model also will mesh well with the users’ mental model of interacting 
with a single bank teller. In this case the interface controller performs the role of being 
the single interaction point.
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Once the behaviors are all modeled and the structure definitions are set, we are ready 
for the final parallel design step in hand-off to user interface engineers. The user 
interface now needs to be mocked up. Multiple versions of the interface with varia-
tions on the operating concept are often mocked up.

Mock-ups extend the executability of the models from a system engineering 
simulation to something that can be shown to the various stakeholders for confirma-
tion that the system behavior is what they expected. Frequently, despite the fact that 
rigorous systems engineering discipline may have been followed, changes are intro-
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duced at this point. Features that were not thought of are added to the work scope. 
Others, that were planned, are removed or changed. Of course, all of the requests for 
change have to be dealt with using the change management process.

Figure 14-6., User Interface mock-up displaying the start instruction and Figure 
14-7., User Interface mock-up prompting for a transaction selection show the mocked 
up screen displays.

These displays are easily put together using any of the commercially available 
screen layout tools such as Xdesigner in the Unix environment or Visual Basic on the 
PC platform. By hooking the mock-up to the executable behavior models, it can be 
used to run scenarios through the entire simulation as the interior models are devel-
oped. 

Figure 14-6.  User Interface mock-up displaying the start instruction

Figure 14-7.  User Interface mock-up prompting for a transaction selection
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The multiple versions of the mock-ups are taken forward to the next core step 
for trade-off analysis and selection based on the verified user preferences from sur-
veys and interviews conducted with the intended users. 

Mock-ups of this nature serve multiple roles in a project. They provide early 
validation of the systems operating concept by exposing users to a working model. 
They also form the basis for development of the actual product. The tools used to 
develop the mock-up produce the skeleton programming code in a variety of lan-
guages. Figure 14-8., Fragments of executable code produced by user interface mock-
up tool gives a sample of what this code looks like. 
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Figure 14-8.  Fragments of executable code produced by user interface mock-up tool

...
Widget background_field = (Widget) NULL;
Widget main_display_window = (Widget) NULL;
Widget auxillary_interaction_window = (Widget) NULL;
Widget button_interaction_window = (Widget) NULL;
...
void create_shell (Display *display, char *app_name, int app_argc, 

char **app_argv)
{

Widget children[4];      /* Children to manage */
Arg al[64];                    /* Arg List */
register int ac = 0;           /* Arg Count */

   ...
XtSetArg(al[ac], XmNtitle, “ATM User Interface Mockup”); ac++;
XtSetArg(al[ac], XmNargc, app_argc); ac++;
XtSetArg(al[ac], XmNargv, app_argv); ac++;
widget0 = XtAppCreateShell ( app_name, “ATM_prototype”, appli-

cationShellWidgetClass, display, al, ac );
ac = 0;

...
XtSetArg(al[ac], XmNspacing, 30); ac++;
XtSetArg(al[ac], XmNmarginWidth, 5); ac++;
XtSetArg(al[ac], XmNmarginHeight, 5); ac++;
XtSetArg(al[ac], XmNentryAlignment, XmALIGNMENT_END); ac++;
XtSetArg(al[ac], XmNentryVerticalAlignment, 

XmALIGNMENT_BASELINE_BOTTOM); ac++;
button_interaction_window = XmCreateRowColumn ( widget2, “but-

ton interaction window”, al, ac );
...

act_button1 = XmCreatePushButton ( button_interaction_window 
“Action Button 1”, al, ac );
...

children[ac++] = background_field;
children[ac++] = main_display_window;
children[ac++] = auxiallary_interaction_window
XtManageChildren(children, ac);

ac = 0;
XtAddCallback(act_button1,XmNactivateCallback, 

interface_controler.mainloop, ACT_BUTTON,1);
...

children[ac++] = act_button1;
...

}

int main (int argc, char **argv)
{

XtToolkitInitialize ();
app_context = XtCreateApplicationContext ();
display = XtOpenDisplay (app_context, NULL, argv[0], 

“ATM_prototype”, NULL, 0, &argc, argv);
create_shell ( display, argv[0], argc, argv );
XtRealizeWidget (widget0);
XtAppMainLoop (app_context);
exit (0);

}

300



Hand-off
14.4 Separation to Database

The handoff to database engineering also follows the core engineering process. As 
always the first step is to assess the available information. The context for the portion 
of the system being designed is especially important to consider. In this case the sys-
tem being designed is the ATM machine. The rest of the ATM system lies within the 
context for this design. The impact this has is that the majority of database work lies 
within the context. The database within the machine is transient in nature, storing a 
short term log of transactions which are waiting to be committed to the main ATM 
system database. It will also be used to store the allowable sequence of transactions 
that are allowable for the current user. This usage of the database requires coordina-
tion between the chief software architect and the database engineer.

14.4.1 Available Database Information
 From the initial information develop in the ATM system context analysis:

• 11.2 The automated teller machine system shall communicate the transactions 
it captures to the banks.

• 11.3 The automated teller machine system shall accept transactions after read-
ing a cash card and receiving a valid pin number from a system user.

• 11.4 The automated teller machine system shall execute only those transac-
tions for which validation is received from the bank.

• 11.6 The automated teller machine system shall print receipts for the transac-
tions executed.

Figure 12-13., Associations with ATM Machine on page 271, gives the context 
for the ATM. This serves to frame the context for the database used within the ATM 
machine. Figure 14-1., Structure Diagram for ATM Software Architecture on page 
291, refines that information showing the database in the context of the rest of the 
ATM machine software.

Other available information is the knowledge of the partitioning of behavior 
between the ATM and the transaction concentrator. This was not detailed previously 
in the example but is assumed here. In short, the database internal to the machine is 
responsible for tracking short term knowledge. It must be able to recover its own state 
from any exception conditions that arise. It also has to ensure that the transaction con-
centrator has logged any transaction that it performs. The concentrator is responsible 
for long term logging of transactions and for printing of all of the reports required of 
the system. We also have available any of the other models that are developed for 
other parts of the system. These can be called upon as needed, for clarification or pos-
sibly for introduction of change that the database subsystem requires.

As always we proceed to the parallel design steps.
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14.4.2 Behavior and Structure of ATM database
Database design requires both structural modeling and behavioral modeling. It also 
has its own set of measurement criteria or effectiveness measures. One of the advan-
tages that arise from designing with executable models is that the implementation is 
separated from the design. Thus if, as is likely in this case, the prudent approach is to 
implement the database directly within a programming language then the design can 
be transformed into code directly. If, on the other hand, the design calls for more 
highly crafted database mechanisms, the design can be transformed into a schema for 
use with a commercial database management system. The portion of the database 
design that lies within the transaction coordinator is likely to need this level of sophis-
tication. The same design approach is employed in each case, however, with the final 
implementation choice postponed until the design is complete. The choice can then be 
made based on weighing all of the factors in the design.

Behavior
Figure 14-9., View of ATM machine database behavior gives the normal processing 
associated with the ATM machine database.

.

This behavior lies within the normal operations context presented in Figure 14-
2., View of ATM Machine Software Behavior on page 292. Looking at this behavior we 
can see that the database behavior is a linear path through a sequence of functions, 
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with one iterative section. The use of graphical models to view, and construct, the 
design of the database has made this attribute of the design plainly apparent. With the 
behavior laid out we can now proceed to the database structure.

Structure
In designing the structure of the database we can reflect back the behavior for identi-
fication of the necessary objects. Some of the database objects will be used to store 
transaction related data. Other items will be needed to store data which is internal to 
the workings of the system. The inputs and outputs to the process steps are used to 
identify candidate items for inclusion in the database as are the names of the process 
step. In this way teh database engineer transform the requirments given in the form of 
a behavior model into the necessary structure definition. A listing of these includes:

• Account

• Transaction

• Bank

• Lock

• Receipt

• Card

• PIN Number

These are all candidates for representation in the database. Further engineering 
analysis leads us to eliminate some of the candidates and add others. Card and PIN 
Number are both eliminated because they are transitory with respect to this database. 
When the central ATM system database is designed these will be reconsidered. Bank 
is also eliminated since there are no relevant characteristics associated with it. Receipt 
requires more consideration. It could be made a part of the design or could be elimi-
nated depending on what other choices are made. This is a decision left to database 
engineering experience and knowledge. Methodology can not be used to make it.

In our sample design we have chosen to eliminate receipt in favor of keeping 
Transaction which we feel more accurately names database information. Account and 
Lock are also kept, each for a different reason. Account has identifying information 
which is needed for the duration of the database entries. Lock is more of a traditional 
database element which might be provided as part of the implementation choice or 
need to be modeled. In our case we choose to model it. 

Beyond the initial candidates we have added a few classes. We need a class to 
store the information relating to the available operations that a bank offers. We also 
have added a class which house the database control behavior and information.Figure 
14-10., View of ATM machine database structure gives the OMT diagram of our 
design.
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As with the user interface engineering, we can build this design using interactive 
design tools. These tools can then turn the design around into an implementation. This 
generation of the implementation, or at least its structural elements ensures that the 
design is accurately transformed. As with the transition between tiers of systems engi-
neering hierarchy, the automation of the hand-off eliminates chance for introduction 
of error. Figure 14-11., Automatically Generated C++ Database Declarations gives 
one of the possible code projections from the OTM model. The same information 
could just as easily have been translated into code for implementation with SQL data-
base management system.
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// DECLARATIONS FOR OMT MODULE atm
class Transaction_Coordinator;
class ATM_Machine_Database_Control;
class Account;
class Lock;
class Transaction;
class Operation;

class ATM_Machine_Database_Control
{
 public:
  void Recover_State ();
  void Find_Offered_Transaction ();
  void Receive_Transaction ();
  void Validate_Transaction ();
  void Close_Transaction ();
  void Process_Card_Insertion ();
  void Format_Receipt ();
  void Close_Account_Record ();
 protected:
  Account* ptrAccount;
  Set<Operation*> ptrOperation;
  Set<Transaction*> ptrTransaction;
  Lock* ptrLock;
  Transaction_Coordinator* ptrTransaction_Coordinator;
};

class Account
{
 public:
  void validate ();
 protected:
  ATM_Machine_Database_Control* ptrATM_Machine_Database_Control;
  Transaction_Coordinator* ptrTransaction_Coordinator;
};

class Transaction
{
 public:
  void Commit ();
  void Terminate ();
  void Recover ();
  void Print ();
 protected:
  void* Amount;
  void* Source;
  void* Destination;
  void* Timestamp;
  ATM_Machine_Database_Control* ptrATM_Machine_Database_Control;
  Lock* ptrLock;
};

class Operation
{
 protected:
  void* Display_Item;
  void* OPcode;
  ATM_Machine_Database_Control* ptrATM_Machine_Database_Control;
};

Figure 14-11.  Automatically Generated C++ Database Declarations
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14.5 Hand-off

Hand-off is one of the critical design points for any system. The requirements for each 
of the components must be clearly and unambiguously conveyed to the specialty engi-
neers. As the design is passed along the basic core technical process continues to be 
employed. It is also augmented with modeling techniques which are peculiar to the 
specialty. We have looked at only two handoffs in this chapter. In practice there would 
be 10s to 100s of handoffs to a variety of specialties, even in a system of modest size 
such as the ATM system. Each of these needs to be handled with care and diligence. 

14.6 Exercises

1. Analyze hand-off to the engineering of field service and installation for ATM 
Machines (a subset of the whole system to limit problem scope).

a. Select useful models from the exercises of Chapter 13.

b. Apply the six core steps and extend as needed the results of Chapter 13 to 
establish how installation and field service can become a competitive income 
producing operation.

c. Define the parts of the ATM Machines that are involved and the kinds of infor-
mation which must be supplied.

d. Define the major elements of training required.

e. Define repair, resale, and disposal activities.

2. Define the hand-off points for the components of a computer.

3. What information is required to hand-off the design of a chiller for a water cooler? 
How should it be presented?

4. Systems are often synthesized for existing components. How does this effect hand-
off?

5. What factors should be considered in determining when hand-off should occur in a 
design?

14.7 References
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Interface with Acquisition and Man-
agement

15.1 Introduction

The preceding chapters describe how to model all kinds of systems: products, ser-
vices, businesses, processes, and plans. The same modeling techniques were applied 
to the systems engineering process itself with emphasis on the technical engineering 
work. The major behavior models and information models for the systems engineer-
ing process are collected together for reader convenience in the last chapter.

In addition to modeling the systems engineering process, the handoff to engi-
neering design disciplines was described in “Hand-off” on page 289. This chapter 
describes the remaining major interface of systems engineering, the interface with 
acquisition organizations and with management. The usual situation pertains. The 
cultures, processes, notations and naming conventions have evolved independently 
such that the common abstractions and development steps are obscured. This chapter 
identifies the common abstractions that pertain to the interface with acquisition and 
management.

15.2 Introduction of Modeling into Business Cultures

The introduction of the modeling of complex systems into businesses for which it is 
new requires a culture change. Such an introduction can be initiated only if those in 
charge of setting business goals favor the change. Those in charge must see the 
change as one which will improve business profitability and can be integrated with 
the existing culture. In addition the change must be perceived by the engineers 
affected as helping them with the goals, schedules, and evaluations which they must 
meet. This population of engineers includes not just the systems engineers but also all 
those who receive specifications from them or who participate on integrated teams. 

 The several existing cultures with which the systems engineering with models 
must integrate have long independent development histories. This chapter considers 
two types of businesses and shows how the development of systems with models is 
related to these traditions. The relationships are close and compatible. However, a 
first look at the relationships shows substantial differences in notations, the naming of 
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things, and in the views of information used. The two business types this chapter con-
siders are the Aerospace supplier industry and commercial product/service develop-
ment businesses. 

The aerospace industry responds to the major agencies of government and the 
acquisition authorities which they have established. The development of aerospace 
products is controlled by government budgeting and the rules of acquisition authori-
ties. The state of system development and its best practices are summarized in the 
emerging systems engineering standards (IEEE P1220, 1994), (EIA/ANSI, 1996). 
Some relationships are developed here between the P1220 standard and the six core 
systems engineering steps used in modeling. The EIA/ANSI standard, scheduled to be 
released later this year) develops higher levels of abstraction than those included in 
P1220.

Commercial product/service development businesses are led and controlled by 
their board of directors and their management. Sophisticated techniques have been 
developed over the years in companies and business schools to establish a business 
strategy which matches products and services to the marketplace to gain competitive 
advantage. Management adoption and implementation of these strategies drives the 
systems engineering that is done. The methods, techniques, views of information, and 
notations used by management for strategy analysis have evolved separately from sys-
tems engineering and are different in appearance and naming conventions. However, 
some of the basic abstractions used by management are identical to those used by sys-
tems engineers and engineering teams, because both groups are analyzing product or 
services and their appeal to customers. It is likely futile to try to establish a single 
notation and set of views of information to be used by all. Within management circles 
and also within the systems engineering profession a plethora of notations and views 
are in use. It is useful to select a representative modern methodology for strategic 
business analysis, and extract from it the basic abstractions which are common to stra-
tegic business analysis and to systems engineering. This basic understanding can then 
be used to transform information between business management and systems engi-
neering teams, or to support teams that directly integrate management strategy experts 
with the product development team. Relationships are developed here between a rep-
resentative modern methodology for commercial business strategy development, 
(Gale 1994), and the six core systems engineering steps.
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15.3 Commercial Product/Service Development Businesses

These commercial businesses develop their own products and services, manufacture 
or source the parts/infrastructure, and sell their product lines/services over decades. 
Occasionally a totally new product or service is developed. More frequently product 
features are extended or new technology is introduced. There is no financial return to 
the business for up front investment in new product until customers voluntarily make 
purchases based on their evaluation of the best offering available to them. The prod-
ucts range from simple systems to very large complex systems. Competition and up 
front investment in product keep the development processes lean.

A century of developing techniques for business strategy has been integrated 
into Customer Value Analysis, CVA, (Gale 1994). Some of these techniques have 
emerged from the pioneering work of Deming and Juran in the 1950’s and its applica-
tion in Japan and the United States. Quality Function Deployment and House of 
Quality methods are now widely applied. Strategic planning at GE in the 1970’s and 
studies by the Profit Impact of Market Strategy (PIMS) Program demonstrated the 
importance in understanding related factors such as market share and market per-
ceived quality and value as seen by customers and prospective customers, (Gale 
1994, 230). To the tradition of financial reporting, tight financial control, and high 
manufacturing quality, CVA adds market perceived quality and value. To organiza-
tional function heads with fiefdoms, CVA adds interfunctional teams that understand 
competitive strategy. Analogous developments have been occurring in the develop-
ment of systems. To the tradition of defining systems with text requirements, model 
based systems engineering adds executable modeling for efficiency and rigor. To the 
earlier practices of individual engineering fiefdoms, modern engineering practice 
adds interdisciplinary teams that understand the system requirements and effective-
ness measures. The effectiveness measures, domain analysis and concept analysis of 
systems engineering are closely related to perceived quality and value in CVA.

Just as there have been many notations and methodologies applied to systems 
engineering, many non-financial measures and representations have been applied to 
business analysis. Often customer satisfaction, market perceived quality, productivity, 
innovation, and technology trajectory are known to be important but are not presented 
in a way that an interfunctional team can make use of that information. One of the 
modern systematic presentations of the information is provided by the seven tools of 
CVA, (Gale 1994, 209). The seven tools are:
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1. Market-Perceived Quality Profile

• Quality related to competitors
• Quality attributes with importance weights
• Perceived quality as scored by customers for each attribute
• Quality Ratio of own product score vs. competitors score for each attribute
• Market-Perceived Quality Ratio as weighted average of attribute Quality 

Ratios
For example, quality attributes for luxury cars could be: trouble free, fuel economy, 
aesthetics, service, comfort, driveability, rapid acceleration, large and roomy, sales 
environment, and brand image.

2. Market-Perceived Price Profile

• Price related to competitors
• Price satisfaction attributes with importance weights
• Price satisfaction as scored by customers
• Relative Price Ratio of own product score vs. competitors score

For example, price satisfaction attributes for luxury cars could be: purchase price, 
trade-in allowance, resale price, and finance rates.

3. Value Map

• Relative Price Ratio from (2) vs. Quality Ratio from (1)
4. Won/Lost Analysis

• List recent sales efforts and who won/lost
• Attach explanation

5. Head-to-Head 

• Quality Ratio of own product score vs. competitors for each attribute
• From (1) above

6. Key Events Time Line

• List of important events in the marketplace
• Lists time
• Lists who responsible

7. What/who Matrix

• Quality attributes vs. responsible organization

Five of these seven tools, 1., 2., 3., 5., and 7. utilize quality attributes or price sat-
isfaction attributes. These customer attributes correspond directly to the systems engi-
neering effectiveness measures which are used to guide trade-off to find a near 
optimal design. The weighting functions used in CVA correspond to the weighting 
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functions used to create a single cost function for trade-off. The same basic abstrac-
tions drive much of the business strategy analysis and the criteria for finding a near 
optimal design for the products that implement the design in the marketplace. 

In both CVA and in model based systems engineering, it is necessary to develop 
many of these attributes and weights by survey of customers, operators, or others who 
are knowledgeable. Relative value to the customer in systems engineering is often 
obtained by performing concept analysis as described in “Concept Analysis” on 
page 229. This provides a quantitative value number for customer perceived value 
attributes based on contribution of the product to the profitability of the customer. For 
the situations in which it applies quantitative modeling is a more rigorous approach 
than those described in CVA and yet is completely compatible with CVA. In many 
situations survey, not analysis, must be applied to get the desired attribute values 
related to customer preference. Some situations are subtle and require both. For 
example, a quality attribute or effectiveness measure for high performance automo-
biles is rapid acceleration. This quantity can be calculated during specification and 
design with engineering equations from the attributes of parts like the torque-rpm 
curve for the engine, transmission ratio and friction losses, friction between tires and 
road, and automobile weight. The acceleration achieved can be measured on proto-
type cares and compared with measurements on competitors cars. One automobile 
company found that their automobile had superior acceleration to it chief competitor 
but still fell behind in customer scoring of this quantity. Further analysis showed that 
the competitor car responded to rapid throttle advance with a slight pause, and then 
with a small backward flexure of the seat when acceleration began. Customers 
responded to the feeling of acceleration not to the absolute fact.

Confirmation of the attribute values is often obtained as early as possible with 
customer survey of early product prototypes or service offerings. Examples include 
test marketing of long life light bulbs, the GE appliance facility in Louisville appli-
ance park for customer use of prototype appliances, prototype medical diagnostic 
equipment in select teaching hospitals, and early trials of cellular phones or home 
shopping networks. Executable specifications resulting from model based systems 
engineering provide opportunity to get this confirmation earlier and at lower cost in 
many cases. 

The optimization features of engineering of model based systems engineering 
and the application of concept analysis form the interface between systems engineer-
ing and strategic management of the business. It is useful and effective to create a 
direct bridge using effectiveness measures, their weights, concept analysis modeling 
and surveys. To the extent that this is done, it becomes possible to expand the ideas of 
teams in the two fields, management and systems engineering. The interfunctional 
management team and the integrated product development team can merge. At the 
very early stages of a development management participation on the team is expected 
to be large. As the development matures and progresses, and as the team grows much 
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larger in size, there is likely an increasing engineering and manufacturing presence on 
the team and a relatively smaller management participation. The effectiveness mea-
sures, and the executable models that produce effectiveness measure values bind man-
agement and engineering together in this approach because the effectiveness measures 
are the same abstractions as the customer value satisfaction attributes and quality 
attributes. With executable models it is possible to project the views of information 
wanted by managers or by engineers because the same basic abstractions are impor-
tant to both.

15.4 Modeling and Aerospace Acquisition

Aerospace businesses must respond to funded contract opportunities as they become 
available. The system requirements, timing, funding amount, funding rate, funding 
continuity, schedule, and process requirements of the contracts are largely out of their 
control. These determinative factors are established by congress, the executive, and 
government agencies, and are influenced by the media. This is a highly technical, 
political, competitive, and social determinative process which considers national 
advantages and dangers. Systems engineering in this arena generally assumes that 
there will be a request for proposal, RFP, issued by an acquisition authority to which 
the business must respond. Classically that RFP contains a text list of requirements to 
be met by the design and validated on the completed system. For large complex sys-
tems the requirements document can be hundreds or more of pages. Awarded contracts 
define the requirements to be met, the schedule, the deliverable, the standards to be 
met, and extensive reviews and documentation required by the acquisition authority.

This acquisition process has resulted in the development of extremely large and 
complex systems which push state-of-the-art and work under extreme conditions. The 
best practices of systems engineering have been described and are taught at the 
Defense Systems Management College, (Kockler 1990), and are appearing in emerg-
ing standards, (IEEE P1220 1994), (EIA/ANSI 1996). The acquisition process is 
under pressure to become more efficient because of the difficulty encountered in con-
tinuing to acquire and maintain the increasingly complex systems which are desired 
with the funding that is available for them.

If one considers the engineering of complex systems to be a valuable jewel, then 
it is different facets of that single jewel that are viewed from different directions by 
aerospace systems engineering, by commercial product/service development busi-
nesses, and by systems engineering using models and objects. Except for detailed 
knowledge of particular applications and technologies, the actual technical system 
engineering work that needs to be done to develop complex systems is the same for 
the many types of systems. This can be seen from Figure 15-1., Typical P1220 Sys-
tem-Part Breakdown, which shows physical elements from which the system is built.

In OMT, this would be a parts tree aggregation.
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Standard P1220 provides a standardized set of names for the objects in the suc-
cessive levels or tiers of decomposition/synthesis of the system. It defines a part as the 
lowest element of a physical or system architecture, specification tree, or system 
breakdown structure that does not need to be partitioned further. (e.g., bolt, nut, 
bracket, semiconductor, computer software unit). This is an typical example of the 
part tree or aggregation tree for the system in an OMT model.

There are three very important concepts that apply to Figure 15-1., Typical 
P1220 System-Part Breakdown. 

1. What constitutes a system, product, subsystem, assembly, component, subcom-
ponent, sub-assembly, or part is relative to the business dealing with it.

2. The systems engineering process applied at any of these tiers of decomposition 
is basically the same, a core process applied repeatedly.

3. The requirements that defined the system came from application of the system 
engineering process at a higher level of decomposition, from the tier above.

15.4.1 Relativity of Systems, Products
At any tier of decomposition of the system: product, subsystem, etc., any of these 
physical elements can be sourced from a subcontractor. The product, subsystem, or 
component for which the subcontractor agrees to supply becomes the system so far as 
the contractor is concerned. What is the “system” is relative to what you agree to 
design and supply. Systems are systems of systems supported by an extremely large 
vendor network. The vendor receives a description of what is wanted, its require-
ments, and supplies objects that meet what is wanted often built to a proprietary 
design of the subcontractor. The requirements can be supplied in several forms as text 
shall statements, as complete narrative descriptions of the excitations, responses, per-
formance and constraints and as executable models of the excitations, responses, per-
formance, constraints, and structure.

15.4.2 A Core Technical Systems Engineering Process
A fully useful systems engineering process is applicable at all tiers of the contractor/ 
subcontractor network. It is able to define fully what a system is to do and to define 
fully how the system is to be built. It is able to produce both requirements and a near 
optimal design solution. It must consider the systems engineering of the product, its 
integration, its distribution, support, and disposal, needed product training, product 
test, and product manufacture.

If the process is model based, then the process description must define the mod-
els to be used, the ordering of their use, and what they capture and transform.
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15.4.3 Requirements Come from the Tier Above 
The requirements that appear in a request for proposal or a contract come from sys-
tems engineering applied at the tier above. There are aerospace businesses, often 
called system integrators, which deal primarily with the high level generation of 
requirements and the coordination of subcontractors. Many other kinds of businesses, 
such as commercial product/service developers, do not respond to a request for pro-
posal because they develop internally the product/service concept, its implementation 
as a product line over time, and how to modularize it for high levels of reuse, ease of 
evolution, and compatibility with earlier releases. They often outsource the majority 
of the product elements or service infrastructure. They control the requirements they 
present to their suppliers to their own internal or industry agreed standards. From the 
viewpoint of this kind of business the systems engineering process does not begin 
with an RFP and analysis of requirements from the RFP or a contract; it begins with 
analysis of the market. Descriptions of systems engineering using models takes a sim-
ilar point of view. This results in two tiers of development or decomposition above 
system under development as shown in Figure 15-2., Renaming of P1220 System-
Part Breakdown. 
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The business which purchases and uses the system will also use many other sys-
tems that must all work together. Concept analysis, Chapter 11, models the business 
using the system under study to establish the value of that system to the business and 
the operators and users of the system. This may be done for a single point of time or 
over a period of time such as a decade to understand product evolution. Domain anal-
ysis extends this to a domain of businesses using the system under development.

Very often it is desirable to sell the system to more than a single kind of business. 
This goal makes it desirable to partition the system such that the system and the ele-
ments of the system match the different businesses uses. This is done by domain anal-
ysis which applies the techniques of modeling to a collection of businesses using the 
product. Functionality and modularity that satisfy multiple businesses are abstracted 
from the analysis. This is design for reuse. 

A supplier business responding to an RFP often need not be concerned with the 
business and domain levels of decomposition. If there are problems with the require-
ments received or if it is desirable to market the resulting product to businesses other 
than the contractor issuing the RFP it may be important to analyze these tiers.

15.4.4 P1220 Systems Engineering Process
Figure 15-3., The P1220 System Engineering Process shows the process as described 
in the P1220 standard. 
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The P1220 standard and its detailed description of the work steps to be done 
does not assume the existence of an RFP with a text requirements document. Rather 
the P1220 description of Requirements Analysis, Requirements Trade Studies & 
Assessments, and Requirements Baseline Validation are a prescription for developing 
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the requirements from information about the business, operators, and users who will 
utilize the system under development. This prescription can be used at the Domain 
and Concept/Business levels of decomposition as well as at the lower tiers discussed 
in P1220. However, the partitioning of the systems engineering process differs from 
that used in “Core Technical Process” on page 97. The equivalence is quite simple. 
The application of the six core technical modeling steps to the context of an object is 
equivalent to the shaded requirements related steps. A second application of the six 
core technical modeling steps to the object itself is equivalent to the non-shaded steps.  
The same modeling process is applied twice, once to the context of the object, then to 
the object itself.

From the viewpoint of modeling, the requirements for a particular subject system 
are created by applying the six core technical steps to a domain of businesses using the 
subject system, or to a particular targeted business using the subject system and to the 
context of the subject system. The information generated is not just the requirements 
for the system but a context description and a partitioning that is near optimal for a 
product line, for evolution of the subject system over time through a succession of 
releases, and for high levels of reuse. When this work is done by one organization and 
then the requirements are used to contract further development with other organiza-
tions, an RFP or RFP’s must be written using the requirements. This is frequently the 
situation in the Aerospace industry. In much of the commercial world a commercial 
product/service development company does all of this work and produces require-
ments for the vendor network that supports it. In all cases the requirements may be in 
the form of text shall statements, narrative operations concepts, executable models, or 
a combination of these. 

15.5 Summary

The full analysis of a system to be developed, the subject system, involves systems 
engineering at all the levels form domain to parts. All of this work is done and con-
trolled by commercial product/service development businesses. This work is typically 
partitioned among several businesses in the aerospace industry with requirements 
imbedded in an RFP used to transfer information and contract responsibility among 
the organizations.

The management techniques used by commercial businesses rely heavily on 
quality attributes, price satisfactions attributes and associated weighting functions. 
These quantities correspond directly to the effectiveness measures and the weights for 
a design cost function that are essential to trade-off in systems engineering. The points 
of view and the assigned teams can be unified by recognizing and using these com-
mon abstractions. The quality attributes and price satisfaction attributes are the major 
items of information for the interface between management business strategy and the 
engineering of complex products and services.
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The viewpoint of engineering with models and objects and the viewpoint of 
standard 1220 are very similar in terms of description of the detailed work steps. The 
major difference lies in how the steps are partitioned in the process description. From 
the modeling standpoint it is useful to describe the process in a manner that show the 
repeated use of a few different models. Thus the description is a single repeated core 
technical process of six modeling steps which is applied first to the context of an 
object to generate requirements and then to the object itself to generate system 
design. This partitioning is consistent with high levels of abstraction and with what 
occurs in commercial product/service development businesses. P1220 does not parti-
tion the process in this fashion. Rather it partitions the process into requirements anal-
ysis, functional analysis and synthesis supported by trade studies and assessments 
which are grouped together, generalized, as systems analysis. The partitioning of the 
system engineering process with a separate partition for requirements analysis 
matches supplier businesses which receive requirements in an RFP from an initiating 
organization. The interface between the businesses responding to the RFP and the ini-
tiating organization can be bridged by augmenting the text requirements of the RFP 
and the text based proposal responses with executable models. The information trans-
fer is made more rigorous and less prone to errors of interpretation. The work can be 
performed in accordance with the best practices proven through use and described in 
standards such as P1220. After contract award, it is possible to demonstrate the 
progress being made by executing the models as well as by providing documentation 
for review.

15.6 Exercises

1. Create examples of the seven tools of Customer Value Analysis for the ATM sys-
tem. 

a. Consider the banks that own the system, the bank employees who work with it, 
and customers who use it. 

b. Compare quality attributes and value attributes with effectiveness measures for 
the ATM Machine.

2. Map the detailed steps that decompose Requirements Analysis, Functional Analy-
sis, Synthesis, Validation, and Systems Analysis onto the six core steps applied to 
context of the object under development and to the object under development.

3. If the RFP-based acquisition system works to produce complex systems which 
push the state-of-the-art, why does it need to change?

4. In what way(s) does the six-step core technical process differe from the emerging 
standards? How are they alike?
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Choosing Methodology
16.1 Tailoring Meta-process to Methodology

This chapter focuses on the alternatives that exist in modeling systems. The alterna-
tives and tailorability of the systems engineering meta-process are very broad. Yet a 
team developing a large complex systems needs to perform its work efficiently with 
high levels of information exchange among the large numbers of team members. The 
team must proceed with a consistent set of engineering steps, views of information, 
notations for that information, and reviews of progress. The team needs to work with 
a methodology they can apply efficiently. The meta-process must be tailored and par-
ticularized for the teams. 

Although the engineering steps and notations presented in this book can be used 
directly as a pattern for a methodology, in many cases it will be most profitable to fit 
the methodology to the existing culture and experience of the work force. The work 
force may be trained in aerospace style systems engineering, in one of the forms of 
object-oriented software development, in the structured analysis type of software 
development or some other tradition. A near optimal solution to this process system 
problem is to match the proven best practices of systems engineering to existing cul-
ture, because training is very expensive. Some heuristics for tailoring:

• Utilize proven best practices as incorporated in the core technical process and 
described detail in texts, (Blanchard and Fabrycky 1990).

• Decide how the system development will be partitioned among the teams

•  By a system parts list, which emphasizes subsystems to components
•  By functional groupings, which emphasizes similar functions
•  By partitioning the context into weakly interacting regions, which empha-

sizes response to excitation without predetermining functional groupings 
or decomposition into parts.
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• Select the views of information to be used and the notation for the views.

• The views must span the work to be done.
• The team members must be trained to understand and work with the views.
• Training costs and errors from misunderstanding will be minimized if the 

work force has experience with most of the views and notations selected. 
• Tailor the assignment and sequencing of engineering steps to the work force 

and the application

• In some organizations there is a long term culture of some groups perform-
ing analysis of text requirements, behavior, and structure; and separate 
groups doing performance analysis.

• Choose to either partition the core technical process among teams, or to have 
teams execute the whole core technical process on their assigned partition 
of the system.

• Either encourage the teams to use the concurrency among the core engineer-
ing steps creatively, or give them a recommended sequence of development 
for those concurrent steps.

• In some applications the objects are well known in advance and creating 
structure models first makes sense. 

• In other applications functionality and excitation behavior are known most 
thoroughly and creating behavior models first makes sense.

• Sometimes the effectiveness measures have either been well defined so they 
can be accepted early, or they badly need definition to guide the develop-
ment and teams so that doing effectiveness measures first makes sense.

• Incorporate a well defined process for handling the unexpected discoveries 
made by the team during development and for handling the late discoveries 
made by sponsors and then required of the development.

• The discoveries will interrupt the ongoing systems engineering work at any 
point and send it back to some other point.

• An instituted process and supporting organizational structure is required to 
handle the discoveries.

16.2 Best Practices and Views of Information

As had been shown in this book, systems engineering has its own best practices which 
have been refined for many decades. Several of these best practices have a great 
impact on the information generated, on the views of information which are used in 
modeling and on process steps which are critical to any methodology used for systems 
engineering. Among these best practices are:

1. Hierarchical development in tiers inclusive of domain analysis, concept analy-
sis, system analysis, sub-system analysis,... component analysis. It may be top 
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down, decomposition, or bottom up, synthesis. 

2. Specification of what a system is to do, its behavior, separate from how it is to 
be built, leaving design to design engineering teams. This enforces separation 
of behavior models from structure models.

3. Creation of trade-off criteria and use of a trade-off process step to find a near 
optimal system solution from a multitude of possible solutions. This is made 
efficient by using alternative mappings of behavior onto structures of alterna-
tive sets of components to develop a set of alternative designs for evaluation. 
Separate models of behavior and structure are needed to make this practice 
efficient.

4. Creation or refinement of an implementation plan at each tier of development.

16.3 Views of Information in Systems Engineering

The two primary views of information are those of structure and behavior. They are 
kept separate as views for purposes of specification and trade-off. They are merged 
by the allocation or mapping of behavior onto the structure for a complete model of 
the system, sub-system or component. Figure 16-1., Possible Views of Behavior and 
Structure shows this separation and the mapping. There remains the issue of what are 
the possible views of behavior and of structure. 

16.3.1 Possible Views of Structure
Description of structure requires aggregation or parts list, interconnection, and classi-
fication, all annotated with number. This results in a primary view of structure and six 
subsidiary partial views. Primary view: 

1. Aggregation, Interconnections, and Classification

Subsidiary partial views:

1.1  Aggregation or parts list

1.2  Interconnection

1.3  Classification

1.4  Aggregation with Interconnection

1.5  Aggregation with Classification

1.6  Interconnection with Classification
323



Choosing Methodology
Map of
Behavior

to
Objects

Classification
(Class Tree)

Aggregation
Assembly

or

Interconnection

Structure Model
(How)

Behavior
Model
(What)

Parallel Function, 
I/O, Control

State, I/O, Functions 
Events, Control

Views of Behavior

Projections
 of

Behavior

Projections
 of

Behavior

Function,
Control

Function,
I/O

State,
Control,
Events

Function,
I/O

Defines Interconnection, Interfaces

Encapsulates Functions

Represented By

Context Diagram

(Part Tree)

Views of Structure

Figure 16-1.   Possible Views of Behavior and Structure
324



Choosing Methodology
16.3.2 Possible Views of Behavior
Description of behavior requires function, control (ordering of functions), and Input/
Output. There are also two ways of representing concurrent functions, more than one 
function is executing at a given time, the predominant situation in large systems. One 
can describe what is occurring at a given time and call it state, or one can describe the 
functions as parallel functions. This results in two primary choices in views of behav-
ior, each of which has subsidiary partial views.

1. Parallel function, control, and input/output

1.1   Parallel function and control

1.2  Parallel function and Input/output

1.3  Input/output and control

2. State, control, events, function, and input/output

2.1  State, control, and events

2.2  Function and input/output

Views of Behavior and Notations
These views are collections of information which can be represented with many dif-
ferent graphic or text notations. Some of the popular notations are listed below.

1. Parallel function, control, and input/output - Behavior Diagrams

1.1   Parallel function and control - Functional Flow Block Diagrams

1.2  Parallel function and Input/output - Data Flow Diagrams, N-Squared Diagrams 

1.3  Input/output and control - Control Flow Diagrams

2. State, control, events, function, and input/output - example not known

2.1  State, control, and events - State Charts

2.2  Function and input/output - Activity Charts, Data Flow Diagrams, N-Squared 
Charts

All of the possible views of behavior, with one exception, are in use and are sup-
ported with tools. The exception is 2. above, state, control, events, function, and 
input/output, which would be difficult to represent in a single diagram. Systems engi-
neering tools tend to neglect Structure 1.3, classification. Software engineering tools 
tend to neglect the primary behavior views based on parallel function and to empha-
size state. 

State Charts rather than state transition diagrams are included in Behavior 2.1 
because state transition diagrams are limited in their ability to model real systems and 
are not hierarchical. State charts have removed those limitations. In addition there is a 
close relationship between Functional Flow Block Diagrams and State Charts.
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The IDEF notations have not been included in this discussion because they lack 
some elements that are needed for executability.

In systems engineering intrinsic sequences of functions may be made concurrent 
by pipelining, and intrinsically concurrent and independent functions may be serial-
ized for performance reasons. These transformations preserve what the system does 
and optimize performance. They change the states, so that the state pictures must be 
transformed also.

16.3.3 Equivalences - Statechart and Functional Flow Block Diagrams
Statecharts, (Harel 1987), have the advantages of being hierarchical, of having a well 
defined relationship with functions, and of defining “and” states that reduce the prob-
lem of state explosion. State explosion occurs when one considers problems such as 
five elevators serving thirty floors of a building. The total number of different simulta-
neous functions and conditions, up down, stopped, floor, for the system of five eleva-
tors is too large to serve as a useful representation of the problem. State charts have 
been integrated into some software engineering methodologies, (Rumbaugh et. al. 
1991).

As is generally the case with different languages, there will be certain expres-
sions which can be written in one of the languages with no equivalent in the other. In 
spite of this fact, it is often the case that a significant span of modeling can be written 
in both languages with translation between the two. This is the case for FFBD’s and 
statecharts. 

Statecharts represent states as shown in Figure 16-2., States in Statecharts.

Functions in FFBD’s correspond to Activities in Statecharts. Sequence in 
FFBD’s results in sequential sates in statecharts. A selection in FFBD’s corresponds to 
transition to states with corresponding activities in statecharts. Concurrency in 
FFBD’s, “and”, corresponds to “and” states in statecharts. This can be shown by com-
paring the core technical steps in FFBD notation, Figure 16-3., FFBD View of Core 
Technical Steps and Figure 16-4., Statechart View of Core Technical Steps.

Actions and Activity while in a State

State Name

entry / entry-action
do: Activity - A
event-1 / action 1
event-2 / action 2
...
exit / exit-action

Figure 16-2.   States in State-
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16.4 Some Methodology Problems and Differences

The fact that different methodologies can express what needs to be expressed in their 
respective notations is not sufficient for them to be applied in the same engineering 
discipline. Object Modeling Technique (OMT), for example, uses statecharts, data 
flow diagrams, and the needed structural associations, (Rumbaugh et. al. 1991). How-
ever, OMT does not apply its process to a hierarchy of tiers to deal with domain anal-
ysis through component specification. The process of OMT omits three of the core 
steps shown in Figure 16-3., FFBD View of Core Technical Steps. It does not formal-
ize core steps 2, 5, and 6. It does not combine statecharts and data flow diagrams into 
an executable behavior.

Real-Time Object-Oriented Modeling (ROOT) also uses statecharts, (Selic, 
Gullekson, and Ward 1994, 484-486). However, ROOT does not use the “and” state 
construction which captures concurrency. Large complex systems have tremendous 
concurrency at their top level. Best practice in systems engineering captures this con-
currency independently of structure, and then allocates it to different possible struc-
tures.

In selecting a methodology and tool support for modeling in systems engineer-
ing, it is essential that the language and notation can capture the systems engineering 
information. It is equally important that the methodology contains all the steps needed 
for executing best systems engineering practices.

One of the best practices which needs further comment is control of change 
when the unexpected is discovered, as always happens in developing large complex 
systems.

16.5 Discovery and the Change Control Process

In real applications the forward process is never followed without interruption 
because customers discover that requirements must change, engineers discover techni-
cal problems, and management discovers need for funding and schedule changes. 
These changes cause the engineering work to be interrupted at some step of the pro-
cess. They force an assessment of impact of the discovery, and work is resumed at 
some different step in the process. Since the work is interrupted at any step and may 
resume at any other step, these impacts cannot be described in a work flow diagram. 

The real engineering work conditions can be rigorously described. The change 
control process describes identification of the need for change, change impact assess-
ment, change authorization, change planning, change execution, and process improve-
ment based on analysis of change causes.

The word discovery is used here rather than error report or bug report because it 
is very valuable to find these unknown issues as early as possible to minimize devel-
opment cost and to use the discoveries as the precious information that can improve 
the process.
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Although all large programs experience imposed change and discovery, the pub-
lished life cycle models do not model the critically important change management 
process. The Waterfall Life Cycle, (Royce 1987), does not show all the potential 
feedback loops among phases because those loops can begin anywhere and end any-
where. The Spiral Model, (Boehm 1986), does not describe the criteria and issues 
which are drivers for the successive product prototypes, releases, and partial builds.

16.5.1 The Change Control Process Description
The change process begins when someone discovers issues that demand a change in 
the project. This discovery may be made at any level of authority. The discovery may 
cause the project to interrupt work at any step of the engineering process and to go to 
any other step.

The change process is shown in Figure Figure 16-5., FBBD View of the Change 
Control Process. There are two major branches to the set of change process functions.
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 The upper branch describes the set of tasks which resolve the issues by making 
changes to the analysis, design and implementation of the system being built. 

The lower branch describes the set of tasks which report the changes, track the 
changes to cause, and alter the engineering and manufacturing processes in use so that 
the occurrence of a detected type of issue is reduced. The lower branch uses the occur-
rence of issue discovery to improve the engineering and manufacturing processes. Its 
purpose is to reduce variance in the engineering and manufacturing processes. It is a 
critical aspect of quality analysis. Too often he who discovers and reports issues early 
is punished rather than rewarded, and the discoveries are not used to improve the busi-
ness.
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Figure 16-5.  FBBD View of the Change Control Process
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16.5.2 Change to the System, Upper Branch
Figure 16-5., FBBD View of the Change Control Process, shows that the first step for 
system improvement, step 2., is to identify and analyze the issues. The analysis pro-
duces a description of the issue, a technical analysis of the impact of the issue, and a 
category and priority for the issue. For large complex programs there will be many 
open issues at any point of time. Subsequently any of three actions is taken:

• The issue is closed, step 3., or

• The issue is reviewed internally, step5., or

• The issue is reviewed, step 4. with the customer or with marketing if it affects 
contract terms or if it impacts the acceptance of the product by customers in 
the marketplace

Tasks 4. and 6. of Figure 16-5., FBBD View of the Change Control Process 
imply not only review of a formal contract with a customer, but also review of the 
less formal requirements and understanding between engineering and marketing 
functions. This type of understanding is critical for commercial business which make 
no sales if their new products do not fit the marketplace. In both situations it is essen-
tial to:

• Describe the issue to the customer/ marketing in language they understand.

• Analyze the impact of the issue with the customer/marketing.

• Listen to customers/marketing evaluate impact, which may be foreign to the 
engineers, in their own language, which may be foreign to the engineers.

• Set priorities if there are multiple issues.

• Categorize the issues as unimportant, as not really affecting contract (hence 
internal), or as affecting the contract.

For those issues that affect contract there is a contract review step 6., of the fig-
ure, that must detail a plan, a change proposal, to fix the issues with associated cost 
and schedule. That plan must be reviewed by customers, marketing, and manage-
ment. There must be an agreement on how the issues are to be resolved. The proposed 
changes and schedule may be accepted as a contract change, may be down graded as 
an internal issue to be corrected without change to budget and schedule, or may be 
judged not to be worth the time, risk, and effort to fix. Accordingly, the figure shows 
branching from step 6. to steps 5., 7. and 8.

Internal review, step 5., is very similar to review with the customer, step 4. In 
this case it is carried out within the project. The size of the project dictates how for-
mally such reviews are conducted and how the power of decision is allocated in the 
organization. Very large projects with hundreds to thousands of workers require much 
more formality and carefully assigned boards and responsibility than do small 
projects with only a handful of staff. 
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During the internal review, step 5, the project plans the permanent fix, step 9. In 
some cases it is necessary to execute an emergency fix, step 10. Because this may 
have to occur very rapidly, quick procedures may be put in place to make sure that the 
identification of the issue and review/authority to make a fix, steps 2. and 5., occur 
without delay. This is particularly true for modifications to systems requiring high 
availability that are in use and in the maintenance phase.

If the contract terms must be changed, then system development continues based 
on the change. the discovery of issues is continuous.

16.5.3 Process Improvement
The early discovery of issues reduces the risk of the project going over cost, missing 
delivery time, and missing the market needs. These discoveries can be used to 
improve the engineering and manufacturing processes so that fewer issues will be dis-
covered in the future. To accomplish this it is necessary to collect the issues data, step 
12., and then analyze and use that information to define and implement process 
improvements, step 13

 In step 12. it is necessary to collect and report the status of issues to understand 
the frequency of testing/review, the frequency of issue discovery, and how well the 
issue resolution process is working. These data also give a picture of how well the 
project is proceeding toward a robust, validated integration. It is necessary to also 
track the issues to their cause and collect that cause data. The cost of rectifying the 
issue needs to be collect and associated with the cause of the issue. This information is 
essential to prioritizing which parts of the engineering and manufacturing process 
should be targeted for improvement to gain the most in efficiency of the work and 
reduce cost and risk.

To implement process improvement it is necessary to identify process deficien-
cies, prioritize the importance of the deficiencies, create a plan to improve the process, 
compare cost of the improvement with the cost of the issues, and then execute the cost 
effective plans. 

Real projects always make discoveries and encounter issues as described above. 
A life cycle model which depicts what really happens on projects must include a 
Change Control Process similar to the one just described. The implementation of a 
Change Control Process may be very formal and complex for large projects or simple 
and less formal for small projects.

Unless staff are rewarded for discovering and rectifying issues as early as possi-
ble, issues will be uncovered late when they are expensive. Unless the information 
obtained as a result of the discoveries is used to improve the engineering and manu-
facturing processes, productivity will lag. Process improvement must be funded and 
rewarded.
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16.6 Concluding Remarks

Systems engineering, as defined in the introduction, is an art. It requires training, 
experience, and creativity to work efficiently through the large solution space of sys-
tems problems (a NP complete class of problems). The solutions are a near optimal 
application of available resources and scientific understanding to meet the needs of 
people.

The modeling described in this book is a technique that uses the laws of science 
and logic to capture the system information once and rigorously, then to transform 
and express it in the views needed by all the stakeholders to the system problem. The 
transformations are essential because the stakeholders have very different back-
grounds, information needs, and training. 

The modeling is not a substitute for training, experience, and creativity. If 
applied blindly, the modeling will lead to unnecessarily large models which do not 
converge rapidly to a near optimal solution. It is important to apply the modeling with 
well developed heuristics like the technical systems engineering process of seven 
core steps. The core steps must be applied creatively to discover the unexpected and 
highly valuable solutions that have greatest value and lowest cost. They must be 
applied creatively to find a solution rapidly by discarding engineering directions that 
will not be useful, yet without missing the discovery of highly valuable solutions. 
Discovery is the heart of the art of engineering.

Discovery is the finding of unexpected valuable solutions and also unexpected 
and important issues. The forward work may be interrupted at any time by the discov-
ery of an issue that requires looping back to earlier stages of work for resolution. 
Thus there is a change control process in parallel with the technical systems engineer-
ing process. It is critical. It is the feedback that stabilizes the process and ensures con-
vergence. Some recommendations:

• Institutionalize proven best practices.

• Use modeling as extensively as the applications, organization culture, manage-
ment support, and investment realities allow.

• Tailor a good systems engineering meta-process to a methodology for your 
organization.

• Include both a technical engineering process and a change control process.

• Introduce new process, training, or tools first on projects of modest size and 
relatively short duration to prove what works quickly. Then scale up.
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 Systems engineering requires a rich and broad perspective. It is a compound of 
art, training, experience, creativity, scientific understanding, awareness of technology, 
and discovery - applied to meet the needs of people individually, as nations and as a 
world. Meeting needs is exciting. Discovery is exciting. The authors wish you exciting 
careers.

16.7 Exercises

1. Describe the methodologies for capturing structure information. Are there elements 
of structure which they fail to capture?

2. Describe the relationship of Data Flow Diagrams to State Charts.

3. Model the impact of a requirement the ATM system be able to process loan 
requests.

4. How do the core steps minimize design change?

5. Describe the of change control on quality.

16.8 References

Blanchard, BF and W. Fabrycky, 1990. Systems Engineering and Analysis, Second 
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Boehm, B.W. 1986. A spiral model of software development and enhancement, ACM 
Sigsoft Engineering Notes, 11, no. 4, 22-42.

Harel, D. 1987. Statecharts: A visual formalism for complex systems, Science of Com-
puter Programming, 8, 231-274

Royce, W.W. 1987. Management of the development of large software systems: Con-
cepts and techniques, Proc. ICSE, 9, IEEE Computer Society Press.

Rumbaugh, James, Michael Blaha, William J. Premerlani, Frederick Eddy and Will-
iam Lorensen, William. 1991. Object-Oriented Modeling and Design, Engle-
wood Cliffs, N.J.: Prentice Hall

Selic, Ben, Garth Gullekson, and Paul T. Ward, 1994. Real-Time Object-Oriented 
Modeling, New York,N.Y.: John Wiley & Sons Inc.
334



A Collection of Process and Information Models
A Collection of Process and Infor-
mation Models

For the convenience of readers, the major process and information models distributed 
through out the book are collected here in one place for ready reference.

1. Part list or aggregation
2. Classification or generalization/specialization
3. Assembly or association
4. Context (next nearest neighbors) or association
5. Multiplicity or number
6. Classes of objects          zero or more       one or more       annotation
7. Instances of objects
8. Attributes of objects - weight, size...
9. Functions or operations of objects 

Operation

Class Name

Attribute

Class

Class Name

Attribute_name

Instance

     = value

Figure 17-1.  Semantics and Symbols for Executable Structure
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