
with
Models and Objects

David W. Oliver

Timothy P. Kelliher

James G. Keegan, Jr.

McGraw-Hill

New York San Francisco Washington, D.C. Auckland Bogata

Caracas Lisbon Madrid Mexico City Milan

Montreal New Delhi San Juan

Singapore Sydney Tokyo Toronto

Acknowledgments

We’re indebted to those who helped us through the difficult and arduous
process of completing this book.

Margaret Kelliher helped greatly with our organization and, without
her, we wouldn’t have completed the first chapter.

Julian Holtzman reviewed drafts of the manuscript and provided
thoughtful insight.

The support, encouragement and patience of our wives; Diane,
Margaret, and Mary has been invaluable.

We are indebited to people and places that have shaped our carrers.
For Dave this includes the technical and management experience pro-
vided by GE Corporate Research and Development Center, training at
the GE Crotonville institute, and the practices and example set by exem-
plary management, particularly Hubbard Horn, John Eshbach, Virgil
Stout, and William Chu. For Tim, whose career is also at GE’s Corporate
Research Center, this includes Dave McGonagle who gave him a chance
to get started and a direction to head. It also includes many others that he
has met at GE and elsewhere along the way. For Jim, William Premerlani
and Will Schroeder offered their personal experiences which helped
complete the book.

To Diane
--dwo

To Margaret, Katherine, and Colleen

--tpk

To May
--jgk

Table of Contents

1 Introduction 17

1.1 The Engineering of Complex Systems Based on Models 17
1.1.1 This Book 17
1.1.2 Systems Engineering as a Discipline 18

1.2 Importance of Engineering Complex Systems 20
1.2.1 Global Economic and Technical Change 20

1.3 The Gap 21
1.3.1 Closing the Gap 22

1.4 Definitions 24
1.4.1 Science 25
1.4.2 Engineering 25
1.4.3 Model 25
1.4.4 System 25
1.4.5 Behavior 26
1.4.6 Structure 26
1.4.7 Context 26
1.4.8 Optimization 26

1.5 Basic Abstractions 27
1.5.1 Basic Abstractions Used with Structure 27
1.5.2 Basic Abstractions used with Behavior 29

1.6 Organization of this Book 30
1.6.1 Principles of Modeling 30
1.6.2 An Example of Modeling 31

1.7 Summary 31
1.8 Exercises 32
1.9 References 33

2 Basics of Structure 35

2.1 Introduction to Structure 35
2.1.1 Structure and Behavior 35
2.1.2 Basic Views of Structure 37
2.1.3 Executable Models of Structure 38

2.2 Example - Modeling a Pocket Knife 41
2.3 Objects and Classes 41

2.3.1 Definition 41
2.3.2 Modeling Objects in OMT 42
2.3.3 Example - Pocket Knife, Object Class Definition 45
Table of Contents v

2.3.4 Example - Pocket Knife Instances 46
2.4 Aggregation 47

2.4.1 Modeling Aggregation in OMT 47
2.4.2 Example - Pocket Knife with Aggregation 48

2.5 Cardinallity 53
2.5.1 Cardinallity in OMT 53
2.5.2 Example 54

2.6 Classification of Objects 55
2.6.1 Classification in OMT 56
2.6.2 Example - Classification of Tools 57

2.7 Interconnection of Objects 60
2.7.1 Definition 60
2.7.2 Interconnection in OMT 61
2.7.3 Example - Multi-Tool Pocket Knife Context 61
2.7.4 Example - Multi-Tool Assembly Interconnection 63

2.8 Roles 63
2.9 Allocation of Functions to Objects 64
2.10 Summary 65
2.11 Exercises 66
2.12 References 66

3 Basics of Behavior 67

3.1 Introduction to Behavior 67
3.1.1 Elements of Behavior 67
3.1.2 Behavior in the System Context 68
3.1.3 This Chapter 69

3.2 Modeling of Behavior 69
3.3 Functional Flow Block Diagrams 70

3.3.1 Functions 70
3.3.2 Ordering 71
3.3.3 Example, Pocket Knife 74
3.3.4 Hierarchy 75
3.3.5 Input and Output 77

3.4 Data Flow Diagrams 81
3.5 Representation of Behavior as State 82
3.6 Pocket Knife Example, Summary 85
3.7 Information Model for Behavior 85

3.7.1 Behavior 86
3.7.2 Input/Output 87
3.7.3 Function 87
3.7.4 Control Operations 88
vi Table of Contents

3.7.5 In Summary 88
3.8 Information Model for Input/Output 88
3.9 Relationship of Behavior and Structure 91

3.9.1 Structure Models 91
3.9.2 Behavior Models 93

3.10 Models and Text for Requirements/Specifications 93
3.11 Summary for Behavior 94
3.12 Exercises 95
3.13 References 96

4 Core Technical Process 97

4.1 Process 97
4.1.1 Process, Methodology, and Tools 98
4.1.2 Product Life Cycle, Acquisition, Systems Engineering Process

100
4.1.3 The Systems Engineering Process Model 103

4.2 The Core Technical Process 107
4.2.1 The Six Steps in the Core Technical Process 108

4.3 Hierarchy 114
4.3.1 Small Systems vs. Large Systems 114
4.3.2 Tiers of Hierarchy 114
4.3.3 Hierarchy, Waterfall, Top Down Development 118

4.4 Re-Engineering 119
4.5 Behavior Model for the Core Technical Process 119
4.6 Union of Best Practice with Modeling 120
4.7 Exercises 121
4.8 References 122

5 Assess Available Information 123

5.1 What Core Step 1 Is 123
5.2 A Requirements Taxonomy 124

5.2.1 Classification by Origin 126
5.2.2 Classification by the Work Needed to be Done 127
5.2.3 Classification by Their Use 129

5.3 A Behavior for Assess Available Information 132
5.3.1 Decomposition of the Behavior of Core Step 1 132

5.4 Summary 135
5.5 Exercises 135
5.6 References 137
Table of Contents vii

6 Define Effectiveness Measures 139

6.1 What Core Step 2 Is 139
6.2 Importance of Effectiveness Measures 139
6.3 An Industrial Example 141
6.4 How Effectiveness Measures Drive the Solution 142

6.4.1 Problem: System 1 143
6.4.2 Problem: System 2 145
6.4.3 Problem: System 3 146

6.5 Types of Effectiveness Measures 148
6.6 Priorities among Effectiveness Measures 148
6.7 Information Model for Core Step 2. 150
6.8 Summary 153
6.9 Exercises 154
6.10 References 155

7 Create Behavior Model 157

7.1 What Core Step 3 Is 157
7.2 How to Create Behavior Models 158
7.3 Example of Behavior Development - Bottling Wine 160

7.3.1 External System Behavior 161
7.3.2 Temporal Performance Requirements 162
7.3.3 Non-temporal Performance Requirements 162
7.3.4 Operations Concept for System Context 163
7.3.5 Behavior of the Winemaker 163
7.3.6 Effectiveness Measures 164
7.3.7 Intrinsic Behavior 164
7.3.8 Emergent Behavior 167
7.3.9 Completing the Behavior - Adding Inputs and Outputs 169
7.3.10 Views of Behavior 170
7.3.11 Behavior, Structure, and Effectiveness Measures 174

7.4 Scenarios and Response Threads as Paths through Behavior 175
7.5 Behavior, Context and Traceability, an Information Model 176

7.5.1 Explanation of the Context Region 176
7.5.2 Explanation of the Behavior Region 178
7.5.3 Explanation of Traceability and Budgeting 178

7.6 Pitfalls in Developing Scenarios and Threads 179
7.7 Summary 180
7.8 Exercises 180
7.9 References 181
viii Table of Contents

8 Create Structure Model 183

8.1 What Core Step 4 Is 183
8.2 Creating Structure Models 183
8.3 Example of Structure Development - Bottling Wine 186

8.3.1 Requirements Review 186
8.3.2 The First Parts Selection, Define Objects 187
8.3.3 The First Parts List or Aggregation 188
8.3.4 Allocate Functions 189
8.3.5 Interfaces Among People 193

8.4 Information Model for Structure 193
8.5 Architecture and Design 195
8.6 Architecture, Applications, Effectiveness Measures and Reuse 198

8.6.1 Design Simplification with Architecture 199
8.7 Summary 199
8.8 Exercise 200
8.9 References 201

9 Perform Trade-Off Analysis 203

9.1 What Core Step 5 Is 203
9.2 Trade-off 204

9.2.1 Values of Attributes 204
9.2.2 Survey 206
9.2.3 Calculate System Performance 206
9.2.4 Iterate 206
9.2.5 Calculate System Effectiveness 206
9.2.6 Other Alternatives 207
9.2.7 Display System Effectiveness 207
9.2.8 Choose Alternative Structure 207

9.3 Information Model 207
9.4 The Problem of Tool Integration 210

9.4.1 Prerequisites for Tool Integration 210
9.4.2 A Comparison with Mechanical Engineering Evolution 211

9.5 Exercises 213
9.6 References 215

10 Create Build and Test Plan 217

10.1 What Core Step 6 Is 217
10.2 Creating a Plan 218

10.2.1 Network Scheduling Approaches 219
Table of Contents ix

10.2.2 Resource Allocation 220
10.3 Behavior Model for Core Step 6 220
10.4 Information Model for Core Step 6 222
10.5 A Check-off List for Planning Plan 224
10.6 Exercises 226
10.7 References 227

11 Concept Analysis 229

11.1 What Concept Analysis Is 229
11.2 Applying the Core Technical Process to Concept Analysis 231
11.3 Core Steps Applied to the Context of the Bank with the ATM System 232

11.3.1 Assess Available Information 232
11.3.2 The Three Concurrent Core Steps, 2, 3, and 4 236

11.4 Core Steps Applied to the Bank with the ATM System 241
11.4.1 Structure of the Bank with the System, Core Step 4.5 241
11.4.2 Effectiveness Measure For Bank with the System, Core Step 2

244
11.4.3 Behavior of the Bank with the ATM System, Core Step 3 245
11.4.4 Trade-off Analysis of the Bank with the ATM System, Core Step

5 246
11.4.5 Create the Sequential Build and Test Plan, Core Step 6 249

11.5 Summary 250
11.6 Exercises 250
11.7 References 251

12 System Analysis 253

12.1 What System Analysis Is 253
12.2 Core Steps Applied to the Context of the ATM System 253

12.2.1 Assess Available Information, Core Step 1 254
12.2.2 The Three Concurrent Core Steps, 2, 3, and 4 254
12.2.3 Effectiveness Measure For Bank with the System, Core Step 2

254
12.2.4 Structure of the Context of the ATM System, Core Step 5 255
12.2.5 Effectiveness Measure for the ATM System Context, Core Step 2

257
12.2.6 Behavior of the Thief in the Context of the ATM System, Core

Step 3 257
12.3 Core Steps Applied to the ATM System 259

12.3.1 Structure of the ATM System, Core Step 5 259
12.3.2 Behavior of the ATM System, Core Step 3 260
x Table of Contents

12.3.3 Structure Implications of the Theft Scenarios, Core Step 4 265
12.3.4 Response of ATM Machine to ATM Customer 268
12.3.5 Structure of the ATM Machine and Related Objects, Core Step 5

271
12.4 Exercises 272
12.5 References 273

13 Sub-system Analysis 275

13.1 What Sub-system Analysis Is 275
13.2 Core Steps Applied to the Context of the ATM Machine 276
13.3 Core Steps Applied to the ATM Machine 278

13.3.1 Effectiveness Measure for the ATM machine, Core Step 2 278
13.3.2 Structure of the ATM Machines, Core Step 5 279

13.4 Exercises 287
13.5 References 287

14 Hand-off 289

14.1 What Hand-off Is 289
14.2 Context For Handoff 290
14.3 ATM Handoff to User Interface 292

14.3.1 Assess Available Information 294
14.3.2 Parallel Design Steps 295

14.4 Separation to Database 301
14.4.1 Available Database Information 301
14.4.2 Behavior and Structure of ATM database 302

14.5 Hand-off 306
14.6 Exercises 306
14.7 References 306

15 Interface with Acquisition and Management 307

15.1 Introduction 307
15.2 Introduction of Modeling into Business Cultures 307
15.3 Commercial Product/Service Development Businesses 309
15.4 Modeling and Aerospace Acquisition 312

15.4.1 Relativity of Systems, Products 314
15.4.2 A Core Technical Systems Engineering Process 314
15.4.3 Requirements Come from the Tier Above 315
15.4.4 P1220 Systems Engineering Process 316

15.5 Summary 318
Table of Contents xi

15.6 Exercises 319
15.7 References 320

16 Choosing Methodology 321

16.1 Tailoring Meta-process to Methodology 321
16.2 Best Practices and Views of Information 322
16.3 Views of Information in Systems Engineering 323

16.3.1 Possible Views of Structure 323
16.3.2 Possible Views of Behavior 325
16.3.3 Equivalences - Statechart and Functional Flow Block Diagrams

326
16.4 Some Methodology Problems and Differences 328
16.5 Discovery and the Change Control Process 328

16.5.1 The Change Control Process Description 329
16.5.2 Change to the System, Upper Branch 331
16.5.3 Process Improvement 332

16.6 Concluding Remarks 333
16.7 Exercises 334
16.8 References 334

17 A Collection of Process and Information Models 335
xii Table of Contents

List of Figures

 Behavior and Structure 36
 Description of Structure: The Elemental Views 37
Ordinary Pocket Knife 41
Ordinary Pocket Knife 41
Class Definition Box 42
 Instance Diagram 45
Initial Class Definition for Pocket Knife 45
Several Instances of Pocket Knife 47
Aggregation Used to Model the Structure of the Universe 48
Pocket Knife Disassembled 49
Part Tree for Pocket Knife 50
Part Tree for Six Tool Pocket Knife 52
Cardinallity and Conditions Expressed in OMT 54
Part Tree for Six Tool Pocket Knife with Cardinallity 55
Classification Tree for Pocket Knife 56
Types of Tools for Class Tool 58
 Multi-Tool Pocket Knife Family 59
A Context of Multi-Tool Pocket Knife 62
 Assembly Interconnections for Metal Knife Case 63
Structural Context of Multi-Tool Pocket Knife 69
FFBD Notation for Functions 71
FFBD Depiction of Sequence 71
Representations of Concurrency in FFBDs 72
Representations of Selection in FFBDs 73
Iteration in FFBDs 74
 FFBD for Person Using Pocket Knife 75
Hierarchy representation in FFBDs 76
 Lower Level FFBD Diagram 76
 FFBD Diagram for Pocket Knife 77
 Behavior Diagram for Pocket Knife 78
 Behavior Diagram for Person Using Pocket Knife 79
 Behavior Diagram for Pocket Knife in its context 80
 Input-Output Diagram for Person 81
 Data Flow Elements for Pocket Knife Context 82
 States in Statecharts 84
FFBD for Pocket Knife recast as a Statechart 84
 Information Model for Behavior 86
Information Model for Input/Output 89
 Behavior and Structure Information Model 92
 Associations of Meta-Process, Methodology, Tools, and Infrastructure 99
 Part List for System Engineering Process 100
 Associations of Process, Product Life Cycle and Acquisition 101
List of Figures xiii

 Extended Part List for System Engineering Process 104
 Model for the System Engineering Process 106
 FFBD View for the System Engineering Core Technical Process 108
 Sequential Application of Core Technical Process to Context and Subject

113
 Behavior Model for the System Engineering Core Technical Process 120
Associations of Available Information 125
Classification of Text Requirements 126
Information Model for Requirements 131
 Functional Flow Block Diagram Decomposition of Core Step 1 133
Context for Systems Engineering 140
Behavior of Three Independently Concurrent Functions 142
Timeline 143
 System 1 built from Object R 144
 Six near Optimal Behaviors 144
 System 2.1 built from Three Object R’s 145
System 3 Built from Two Object R’s 146
Behavior of System 3 147
 Classification of Effectiveness Measures 148
 Information Model for Create Effectiveness Measures 151
FFBD View of Define Effectiveness Measures, Core Step 2 152
Two Resources 154
 FFBD View of Core Step 3 158
Context Diagram for Bottling Wine 161
Behavior of the Winemaker 163
Top Level FFBD for Bottling Wine 165
 Gathering Supplies For Bottling Wine 165
 Fill the Bottles for Bottling Wine 166
 Completed Functional Flow Block Diagram, Bottling Wine 167
 Modified Functional Flow Block Diagram, Bottling Wine 168
Top Level behavior for Bottling Wine 169
Second Level Behavior for Bottling Wine 170
 Data Flow Diagram for Bottling Wine 171
 Reformatted Data Flow Diagram for Bottling Wine 172
 Revised Functional Flow Block Diagram 173
Information Model for Text Requirements, Behavior, and Context 177
 FFBD View of Core Step 4 184
 Top Level Selection among Objects 187
 First Parts List for Manual Wine Bottling System 188
 Modified Functional Flow Block Diagram, Bottling Wine 189
 Allocation to Three People 191
Information Model for Text Requirements, Structure, and Context 194
 FFBD View of Core Step 5 204
 Information Model for Perform Trade-off Analysis 209
 FFBD View of Core Step 6 221
 Information Model for Core Step 6 223
xiv List of Figures

 Tiers of Analysis and Decomposition/Synthesis 229
 FFBD View for the System Engineering Core Technical Process 231
Initial Structure of Bank Context 237
Structure for Individual Customer 239
View of Behavior of Individual Customer 240
Structure of the Bank 242
Classes of Bank 243
The Teller 244
View of Behavior of Individual Customer Using the ATM System 245
View of Behavior of the ATM System 246
Kinds of ATM Machines 248
Context of ATM System 255
Kinds of Thief 257
Behavior of Cabinet Cracker 258
View of Behavior of Mugger 258
View of Behavior of ATM Customer 259
Sub-systems of ATM System 260
View of System Behavior 261
ATM Machine 262
ATM Machine Revised 265
Classification of Secure Locations 266
Kinds of ATM Machines, Modified 267
Behavior of ATM Machine 269
Associations with ATM Machine 271
View of System Behavior 276
View of Response of ATM Machine to Thief 277
Kinds of ATM Machines, Modified 280
ATM Machines, Parts List and Associations 282
Theft Protection LRU 283
The Components as Objects with Attributes and Functions 284
 LRU Objects 285
The Five ATM Machines 286
Interconnection Diagram 286
Structure Diagram for ATM Software Architecture 291
View of ATM Machine Software Behavior 292
User Interface Related Behavior of ATM Machine. 293
Behavior of Display Start Instruction 296
Structure of User Interface Components 297
User Interface mock-up displaying the start instruction 298
User Interface mock-up prompting for a transaction selection 298
Fragments of executable code produced by user interface mock-up tool 300
View of ATM machine database behavior 302
View of ATM machine database structure 304
Automatically Generated C++ Database Declarations 305
Typical P1220 System-Part Breakdown 313
Renaming of P1220 System-Part Breakdown 315
List of Figures xv

The P1220 System Engineering Process 317
 Possible Views of Behavior and Structure 324
 States in Statecharts 326
 FFBD View of Core Technical Steps 327
 Statechart View of Core Technical Steps 327
FBBD View of the Change Control Process 330
Semantics and Symbols for Executable Structure 335
 Information Model for Behavior 336
Information Model for Input/Output 337
 Behavior and Structure Information Model 338
 Associations of Meta-Process, Methodology, Tools, and Infrastructure 339
 Associations of Process, Product Life Cycle and Acquisition 340
 Model for the System Engineering Process 341
 FFBD View for the System Engineering Core Technical Process 342
 Sequential Application of Core Technical Process to Context and Subject

342
 Functional Flow Block Diagram Decomposition of Core Step 1 343
FFBD View of Define Effectiveness Measures, Core Step 2 344
 FFBD View of Core Step 3 345
 FFBD View of Core Step 4 345
 FFBD View of Core Step 5 346
 FFBD View of Core Step 6 347
Information Model for Requirements 348
Context for Systems Engineering 349
 Information Model for Create Effectiveness Measures 350
Information Model for Text Requirements, Behavior, and Context 351
Information Model for Text Requirements, Structure, and Context 352
 Information Model for Perform Trade-off Analysis 353
 Information Model for Core Step 6 354
 Tiers of Analysis and Decomposition/Synthesis 355
xvi List of Figures

Introduction
Introduction
1.1 The Engineering of Complex Systems Based on Models

People as toolmakers have developed systems for thousands of years and have devel-
oped techniques for coordination of large efforts. In a timespan shorter than a single
career, the complexity of systems and the pervasiveness of computers and software
have increased so much that production of modern systems demands the application
of a wide range of engineering and manufacturing disciplines. The many engineering
and manufacturing specialties that must cooperate on a project no longer understand
the other specialties. They often use different names, notations, and views of informa-
tion even when describing the same concept. Yet, the products of the many disci-
plines must work together to meet the needs of users and buyers of systems. They
must perform as desired when all of the components are integrated and operated.

1.1.1 This Book
This book describes how to combine text descriptions and rigorous modeling to ana-
lyze and describe large or small complex systems. The systems engineering work
begins with the needs of users, owners, and operators and with the realities of the
marketplace.The systems engineering work transforms these needs into a description
of a system architecture and design that specifies the components to be designed,
implemented and integrated. The fundamental process for the engineering of systems
is an optimization process. That process finds a near optimal solution for the system
out of a multitude of possible solutions. The process produces rigorous descriptions
of the near optimal solution by defining what the components are, what they must do,
and how they interact to perform as a system. This book focuses on the technical
engineering work of transforming needs to a near optimal system solution for com-
plex systems that require multiple engineering disciplines to do the work. The
approach is a synthesis of proven systems engineering best practices with the rigor of
information transformations. The basic abstractions and processes required are
described. The resulting meta-process description for systems engineering work is
highly tailorable to organization need and culture.

To develop any complex system, a team of engineers, working at the system
level, must analyze the needs of the users, operators, and owners. The systems team
must give to the many design, engineering, and manufacturing disciplines a rigorous
17

Introduction
description and specification of the system and the components that are to be pro-
duced. These descriptions must be provided in the representations, terminology, and
notations used by the different design disciplines. They must also be unambiguous,
complete, and mutually consistent such that the components will integrate to provide
the desired emergent behavior for the system. When the product is completed and
offered for sale, its emergent behavior must match the needs of customers so well that
they will choose to buy and use it.

The systems team must also describe the emerging system to the interested
stakeholders - management, marketing, users, owners, operators, and acquisition
authorities. These stakeholders are the decision makers for funding development and
for purchase of product or service. These system descriptions must effectively address
the concerns of the stakeholders in form, language, and level of detail useful to them.
These system descriptions will be less detailed than those provided to design, engi-
neering and manufacturing disciplines.

One thesis of this book is that modeling results in higher quality systems,
designed and produced at lower cost and in a shorter time, with a better fit to the mar-
ket. A second thesis of the book is that with modeling the system specification can be
executed to show what will occur and can be transformed efficiently and rigorously
into the several different languages and forms useful to both the system stakeholders
and to the design, engineering, and manufacturing disciplines. A third thesis of the
book is that with the same modeling applied to systems engineering itself you get a
well defined discipline, improved capability to train, and essential definitions needed
for building automation and infrastructure for efficient and creative systems engineer-
ing. These definitions are consistent with the best practices and standards developed
over many years and augment them with executable models.

There is a management role in the engineering of systems, to provide a systems
view for scheduling and management of resources, and a systems view for the resolu-
tion of the technical issues that arise. This book discusses these management tasks to
separate them clearly from the technical tasks of systems engineers. The major focus
of the book, however, is on the technical work and how to accomplish this rigorously.
Systems engineering management is described in detail in the selected references
(Blanchard and Fabrycky 1990) and (Defense Systems Management College 1990).

1.1.2 Systems Engineering as a Discipline
The development of modern complex systems requires engineers from several disci-
plines and also engineering generalists. In some industries, such as aerospace, the
engineers focusing on the front end definition of the system are called systems engi-
neers. This job function is taught as a separate discipline in a growing number of uni-
versities. In other businesses engineers with these front end responsibilities are called
by many different names and their work may or may not be recognized as a distinct
discipline. Recognized or not, it is a critically important because it:
18

Introduction
• Matches the product to the marketplace

• Defines the components so the designers can be design and built them

• Determines most of the design choices affecting system cost and performance

• Ensures that the components will integrate successfully and perform together
as required

• Provides specifications free of errors, since errors are very expensive to correct
in the latter stages of design and production.

It must, therefore, accurately reflect a total system design that is both feasible and
effective in component design. In addition, the system design must be not only cor-
rect but also unambiguous. If not then the components will not integrate correctly and
the desired emergent behavior will be compromised. Failure to do this work, up front,
causes the system to cost more than was budgeted, miss its market window, and have
an increased chance of marketplace product failure.

Where does system engineering end? Design of the components is the responsi-
bility of the engineering experts in the disciplines: mechanical engineering, software
engineering, database engineering, civil engineering and the like. Implementation of
these components is the responsibility of manufacturing, building construction, and
others. Design of the total package of components including their interrelationships is
the domain of the systems engineer. Of course what one company considers to be a
component another treats as a system.

This book describes a process for combining rigorous modeling with text
descriptions to analyze and describe:

1. user needs

2. the system to meet those needs, and

3. the components to be designed and built

Following this process leads to a near optimal system solution. This fundamental pro-
cess for the engineering of complex systems is an optimization process. It finds a
near-optimal solution out of a plethora of possible solutions. It produces rigorous
descriptions of the near optimal solution by defining what the components are, what
they must do, and how they interact as a system. The process draws on the best prac-
tices of systems engineers and combines these with modern modeling techniques.
Together these produce a rigorous method by which to design complex systems.
19

Introduction
1.2 Importance of Engineering Complex Systems

There are economic and technical changes sweeping the globe that make systems
engineering critically important to the industrialized nations and their peoples. There
is also a deadlock, an impasse, which the art of systems engineering faces and which
presently limits its contributions.

1.2.1 Global Economic and Technical Change
In earlier times goods and payments passed across regulated national borders, but pro-
duction facilities, knowledge, and culture remained within those borders as a national
competitive advantage. At present there is an almost instantaneous movement of
ideas, information, key people, and capital across national borders. Productive capac-
ity can be quickly established anywhere there is an economic advantage. It is possible
to have high technology, high productivity, high quality, and low wages (Schwab and
Smadja 1994). This is a trans-national phenomenon. It is occurring across nations
where regions are working together to define markets and make investment by inter-
national companies most attractive, (Thurow 1992), (Krugman 1994). Europe is mov-
ing toward a trading block. Hong Kong has embraced Shenzen and the Zhu River
delta of China. Malaysia has become a world leading producer of semiconductors and
is now discouraging labor intensive industry. Indonesia, Malaya, and Thailand are
linking their cities of Medan, Penang, and Phuket. Taiwan, Japan and Korea are mov-
ing productive capacity to China and Vietnam. The United States and India are pro-
ducing software cooperatively.

To remain competitive global companies are relocating design and production
wherever it is advantageous to produce goods and to maintain relationships for selling
goods (Krugman 1994), (Ohmae 1995). Major global companies are increasingly
opening their top management and boards of directors to candidates from all nations
(Reich 1991). This is beginning to occur even in nationalistic Japanese companies and
family oriented Chinese companies. Global businesses which do not follow these eco-
nomic imperatives are likely to wither. This is the information age and technology has
shortened the time to cross oceans.

Span of National Control and Investment in National Advantage
The advanced industrialized nations can no more prevent the movement of design and
production capability to other regions of the world than could the Luddites of England
prevent replacement of their hand loom cottage industry in the early 1800’s by punch
card automated looms.

Nations and blocks of nations have the capacity to create an environment that
encourages investment. Singapore provides an excellent example of investment strat-
egy, but not of individual freedoms (Sisodia 1992). The investment policies in the
United States are less strategic (Porter 1992). One of the most critical investments for
any nation is in the skills and industrial culture of its people (Reich 1990). The people,
20

Introduction
unlike capital, information, patents, laboratories, design organizations, and produc-
tion facilities, remain located in the nation. The skill of the work force is a major
attraction to investment. Investment produces the jobs for the people.

Some investments by a company or nation give it an unique advantage which
establishes and maintains profitability even in the face of aggressive low cost com-
petitors. Such advantages have been called dis-equilibrium advantages, (Thurow
1996). Education and infrastructure in systems engineering for the definition of com-
plex systems is such a dis-equilibrium advantage.

Importance of Systems Engineering
The development of new large complex systems with world sales potential is a major
contribution to any economy. No nation can keep the production of parts within their
borders if there is an economic advantage elsewhere. However, industrialized nations
can keep the development of new complex systems within their borders if they have a
preeminently qualified work force and infrastructure for defining competitive sys-
tems efficiently. Some parts will be sourced world wide and help open global mar-
kets. Most part manufacture, assembly, and integration can be kept within borders by
the organization that creates the system. A few examples from just one industry are:
the Boeing 777, the stealth bomber, the replacement American Airlines ticket reser-
vation system, and the FAA flight control system. Some of these examples were suc-
cesses and some were failures (Gibbs 1994). The successes provide downstream
employment and job training experience for thousands of workers. The failures waste
capital and human resource. Existing experience with successful complex systems,
professional system engineering skill, and system engineering infrastructure have tre-
mendous positive downstream leverage on an economy.

However, there is a gap, a roadblock in attaining state-of-the-art systems engi-
neering skill levels and infrastructure.

1.3 The Gap

The information which is critical to a modern system definition comes from users,
operators, owners, marketing organizations, and procurement organizations. This
information is often available only in informal, natural language, such as English.
The language expresses needs to be met without referring to engineering concepts
and terms. This is the systems engineering input.

The output from systems engineering is a set of specifications. These are dis-
seminated to a wide variety of support disciplines which need specific information in
their own notations and views, available to them in their own computer based tools.
Systems engineering information needs to be rigorously transformed to the multiple
different models, notations and views of the downstream engineers who create
designs.
21

Introduction
The Gap is the void between needs expressed in informal, natural language and
component specifications described in the multiple engineering notations. To date this
gap has been bridged by good systems engineering practices and by hard work. This
work results in huge text documents detailing the component specifications for
designers. Engineers in each downstream discipline must read and interpret the text,
transform it into their own models and terminology, and then enter it into their com-
puter tools. They must remove the ambiguity and inconsistencies between what has
been written and what they know will work correctly. Clearly, this process is time-
consuming and error-prone.

1.3.1 Closing the Gap
 Modeling can fill the gap. Modern technology now gives us desk top access to power-
ful computers and software which can provide modeling to fill the gap, reduce the
effort to cross from needs to specifications, and increase rigor and correctness.

Capture of the modeling information for modern complex systems is important
both for productivity in the engineering work and for checking information for incon-
sistencies, omissions, and errors.

Prior Experience in Other Disciplines
 Similar gaps have existed in other fields including mechanical engineering, integrated
circuit chip design, and software engineering. In some cases these gaps have been
closed. Mechanical engineering is a good example of the evolutionary approach to
filling the gap. Mechanical engineering is one of the oldest engineering disciplines
and has addressed many of the problems now faced by the systems engineering. One
of the major tasks of mechanical engineers is to specify the geometry of parts which
are to be manufactured and assembled. These geometries are then analyzed to ensure
that they will perform according to the requirements and that they can be manufac-
tured efficiently.

The traditional mechanical engineering technique to describe a part’s geometry
was to use physical drawings. In the 1960’s computers and software tools began to be
used to capture mechanical geometry information. However, these tools belonged
exclusively to the mechanical engineers. The computerized drawings still had to be
read and translated separately by other engineers performing analysis and simulation
because their computer tools used for analysis could not exchange information with
the mechanical design tools.

 The geometric specification of mechanical systems is now rigorously transmit-
ted and transformed among computer tools for design, analysis, and manufacturing.
The numerous tools were originally developed independently with different assump-
tions about nature of geometry information. Integration of the tools was not possible
until a language was developed which unambiguously described the required geome-
try. The Express language was chosen. It is semantically well defined and spans the
22

Introduction
application of geometry. In addition standards have been developed and used to
implement the seamless translation and transfer of information among tools for
mechanical design, analysis, and manufacture. The STEP/PEDES standards for rep-
resenting geometry is one such standard. The value of which was demonstrated by
projects developments such as the Boeing 777 aircraft, (Norris 1995).

When transistor design was first begun a single engineer could understand a cir-
cuit in its entirety. A gap developed as the circuits grew in complexity and then
moved from discrete components into integrated circuit chips. The same level of
attention to detailed design was needed as in the older component designs but, it grew
beyond the scope of individual comprehension. To close the gap a new generation of
design and analysis tools had to be built and a methodology for effective tool use had
to be developed. Integrated circuit chips are now designed and simulated using
VHDL or schematic capture and are transformed into geometric mask features for
manufacture using standardized intermediate forms for the information. Well estab-
lished design rule standards define exactly how manufacturing foundries can accom-
modate the design and the circuit layout (Mead and Conway 1980).

Software engineering has closed a similar gap, only to have the gap reappear at
a higher level. Assemblers and compilers were developed to close the initial gap
between programmers and the computers with which they worked. This not only
helped to ensure correct operation of their programs, it also took much of the drudg-
ery of programming out of the hands of humans and put it into the computer. This suf-
ficiently closed the initial gap. It reappeared, however, at a higher level. As
computers grew more powerful and correspondingly software became more complex,
the compilers and languages they supported were no longer sufficient to ensure cor-
rect operation.A new generation of tools have been developed to help close the new
gap. In these tools software algorithms and structure are designed graphically and in
higher level languages. These are compiled by rigorous transformation to the
machine language needed by specific computer architectures. Data relationships are
captured in information models which can be represented in graphically or symbolic
language. The database schema can be generated from the models, (Premerlani and
M.R. Blaha 1994, 1993).

Closing the Gap in the Engineering of Complex Systems
The gap for the engineering of systems can be filled by extending the modeling tech-
niques that are applicable to the definition of systems described in this book.

 Rigorous, executable models of behavior (what things do) and structure (how
things are built) means the capture of system requirements and specifications in mod-
els that are computer executable and unambiguous. It is possible to use automatic
transformations of the system models into exactly the views and notations needed by
23

Introduction
the supporting engineering disciplines. This rigor cannot be obtained with non-execut-
able specifications written in natural language text alone. That is not to say that text is
unimportant. It is used to accompany the models and provide explanations of them.

The tools for this work, however, as was the case for Mechanical Engineering,
have been created by different laboratories and vendors and they cannot exchange
information with one another. There is at present no agreed upon computer-executable
description of the work to be done in systems engineering and of the information to be
captured and transformed. Such standardized computer executable descriptions are
essential for creation of an integrated tool environment.

The same modeling techniques that are applicable to system requirements and
specification can be used to define the system engineering work to be done and the
information to be captured and transformed at each step of the work. It is possible for
the systems engineering profession to carefully define the process it uses, rigorously
defining its accumulated best practices as a behavior for engineers. An executable
meta-process model provides a framework for this definition. The information cap-
tured and transformed at each step of the meta-process can be represented in an exe-
cutable information model which captures the structure of data relationships. We will
show how to use this meta-process not to drive engineers to perform their work in
exactly the same way, but rather to tailor the methodologies, notations and views of
choice by individual businesses and organizations.

Purposes of Modeling
Modeling is used to reduce the time and effort expended by engineers shortening the
design cycle time. It is used to check the information for consistency and complete-
ness reducing the error rate. It is used to preserve the current engineering results for
use during later maintenance, product upgrade, or product replacement efforts. It is
used to describe unambiguously; every symbol and number such that each has one and
only one meaning. The models ensure that at the end of the process all necessary
information is available and correct.

Modeling in no way substitutes for creative engineering thinking and problem
solving. Creativity and new solutions come from the engineers. Modeling reduces
their manual work and improves accuracy.

1.4 Definitions

Words like science, engineering, system, context, structure, and behavior are widely
used and understood. The specific interpretation of each word varies with the context
in which it appears, the person seeing it and the disciplines using it. A few definitions
are given to clarify these terms for their use in this book.
24

Introduction
1.4.1 Science
“Science is the branch of study that is concerned with the establishment or strictly
with the quantifiable formulation of verifiable general laws chiefly by induction and
hypothesis”. (Mirriam-Webster 1981)

Science carefully observes the behavior of things and creates quantitative laws
that describe what things do under defined conditions. These laws are executable
quantitative models. They can be evaluated by people or computers to get numbers
that describe things and what the things do.

1.4.2 Engineering
“Engineering is the professional art of applying science to the optimum conversion of
the resources of nature to benefit man.” The words engine and ingenious are derived
from the same Latin root, ingenerare, meaning to create.”

“Engineering is an art requiring the judgement necessary to adapt knowledge to
practical purposes, the imagination to conceive original solutions to problems, and
the ability to predict performance and cost of new devices or processes.”

“Unlike the scientist the engineer is not free to select the problem that interests
him; he must solve problems as they arise; his solutions must satisfy conflicting
requirements. Usually efficiency costs money; safety adds to complexity; improved
performance adds to weight. The engineering solution is the optimum solution, the
end result that, taking many factors into account, is most desirable.” (The New Ency-
clopedia Britannica 1980)

Engineers solve real problems using the laws of science, executable models, to
predict quantitatively the performance of alternative solutions to real problems in
order to create new things that benefit people. It is a creative art to find better systems
that better meet peoples needs. Quantitative modeling taken from the results of sci-
ence is the aid that engineers use.

1.4.3 Model
“Model: A pattern of something to be made” (Mirriam-Webster 1981).

A model describes the essential nature of a process or thing. They are not the
thing itself. Models are validated only when they have been verified by observation
and measurement under controlled conditions. Models are unambiguous, they use
mathematics, graphic or symbolic languages that have one meaning only for the sym-
bols used. Natural languages like English do not qualify for modeling. The natural
languages are essential for written explanations of the models.

1.4.4 System
“A system is a complex unity formed of many often diverse parts subject to a common
plan or serving a common purpose.” (Mirriam-Webster 1981)
25

Introduction
A system is a thing built from many other things, components, which interact for
a common purpose. If an engineer is to define a system he must describe its context,
its behavior or purpose, and its structure

1.4.5 Behavior
“Behavior: The way in which an organism, organ, or substance acts, especially in
response to a stimulus” (Mirriam-Webster 1981).

When we describe the behavior of a system we will consider scenarios of its use
under a variety of conditions and the systems response to the scenarios.The engineer
must describe the system response to the external things under all possible conditions.

1.4.6 Structure
“Structure: Arrangement of parts, or of constituent particles, in a substance or body”
(Mirriam-Webster 1981).

The structure of a systems is the parts that it comprises and the relationships
among them. The engineers must describe the structure of the system:

• A list of all the components that comprise it

• How the components are interconnected

• What portion of the total system behavior is carried out by each component

1.4.7 Context
“A context is the interrelated conditions in which something exists or occurs.” (Mir-
riam-Webster 1981)

A significant misconception about context is the assumption that the context is
given in a particular problem and does not need to be analyzed in the art of finding a
near optimal solution to the problem. Very often the most important aspects of the
problem involve looking at alternatives in the context and evaluating them.

1.4.8 Optimization
“Optimum: The best or most favorable degree, quantity, number” (Mirriam-Webster
1981).

It follows then that optimization is the process to achieve the most favorable
degree. In systems design we need to consider optimization at two levels, context and
system.

Context Optimization
• Analysis of alternatives in the context of the system

• Choice of a near optimal context for the problem
26

Introduction
System Optimization
• Analysis of alternatives in the structure of the system, what components may

be used and what each component may do.

• Choice of a near optimal set of components and their individual behaviors, a
design of the system

1.5 Basic Abstractions

There are a set of commonly used abstractions that people use to simplify the world
around us. They are so familiar that we often do not consciously think about them as
we use them and do not distinguish among them clearly as we speak or write about
them. These are the same basic abstractions that are needed for modeling in the engi-
neering of complex systems. However, in modeling it is necessary to clearly define
the abstractions and use symbols for them avoiding ambiguity of meaning.

Because these abstractions are basic, they appear in the many engineering disci-
plines and in languages used for software engineering, (Liskov 1981). Unfortunately
the basic abstractions are called by different names, represented with different sym-
bols, and combined in different ways by the engineering disciplines and in the sup-
porting tools. These abstractions, their meanings or semantics, are the basis for both
modeling in systems engineering and for automated translation of that information
into the notations and views of other engineering disciplines.

1.5.1 Basic Abstractions Used with Structure

Things or Objects
Distinguishable things or objects are one of the most fundamental notions of human-
ity. There are several aspects of objects that are used to describe or specify them:

1. Name of the thing

2. All of the properties of the thing that are important for the problem of current
interest

3. All of the tasks, actions or, functions, that are be performed by the thing for the
problem of current interest

4. All of the inputs the object accepts and the outputs it generates

5. How to connect to the object (its interfaces)
27

Introduction
Parts Tree or Aggregation
Systems are often composed from other systems. Things are built from things. Aggre-
gation allows us to consider the thing as a unit, ignoring its parts, a vast simplification
in thought. Alternatively it allows us to consider an object as an assembly of parts; to
think about how it is built. A parts tree captures this information. When all of the parts
are properly assembled the object is produced.

Interconnection
Since things are built from things, we must have a way to express how things relate to
each other. We must be able to show which parts in an assembly are connected and
which are not. Interconnection shows this and defines additional information about
how the connection takes place and what interfaces are used.

Number
From infancy children are taught the abstraction of number and how to count. If we
have many of a thing number lets us express how many in a rigorous way. When we
learn arithmetic we have a set of rigorous logical rules that we can use to execute this
abstraction and transform the information as we need.

Classification
Classification deals with the kinds of things that exist. It is a grouping abstraction
based on shared properties. Classes can be broken down into subclasses and the sub-
classes into sub-subclasses The abstraction of class and classification tree is distinctly
different from that of parts and parts tree.

• The abstraction of parts describes how something is decomposed or assem-
bled.

• The abstraction of class shows common properties or behavior of things. It rep-
resents alternatives that may be chosen and provides a means to find or index
things

One may wish to select a pet by choosing among birds, fish, dogs, or cats. If the
choice is a dog, is the dog a poodle, a labrador, or a terrier? These are class choices.
The pet shop will probably be arranged with animals of any one class in a particular
area. One finds a labrador by going to the dog section.

The distinction between parts of things and classes is often blurred in speech and
in writing. Both abstractions are important and useful, and they need to be distin-
guished in any notation used to model systems.

Association
The abstractions Aggregation, Interconnection, and Classification are all referred to
more generally as associations.
28

Introduction
1.5.2 Basic Abstractions used with Behavior
The basic abstractions used with behavior are functions and composition. While these
may sound unfamiliar, they are commonly used by most people. A simple example
will illustrate these abstractions. We will look at a behavior and then pull it apart into
its basic components.

Consider the behavior of “Put out the milk for dinner” as though it was not intu-
itively obvious and had to be explained in detail. For example, imagine explaining it
from the standpoint of a young child who does not know what to do or from that of a
person from a primitive area who had never seen a modern kitchen.

“Put out the milk for dinner” is composed of other behaviors like: “Get glasses
from the cupboard”, “Get milk bottle from the refrigerator”, “Pour milk into glasses,
“Return milk bottle to the refrigerator”, and “Put glasses on the table”

Each of these behaviors involves one or more actions taking place. These
actions are variously called work steps, methods, functions, or activities. Different
words have been used to describe this abstraction which refers to work that trans-
forms things. In this discussion, we use function for this abstraction. The basis of this
abstraction is the description of work which transforms things

In more formal language, a function is described in terms of inputs, outputs and
a transform relation output to input. The function “Pour milk” has as inputs a bottle of
milk and empty glasses. It has as outputs glasses filled with milk and a bottle from
which milk has been removed.

Functions, taken by themselves, are not sufficient to describe behavior. There is
an ordering to the functions. Some ordering is intrinsic; it is imposed by the reality of
the world. In other cases the choice of order may not effect the desired transformation
and can be chosen for convenience. It is often desirable to leave some of these alter-
native choices to designers.

In our example, “Get glasses” and “Get milk bottle” may be done in any order.
“Get glasses” and “Get milk bottle” must both be completed before “Pour milk” can
be done. “Get glasses” must precede “Put glasses”. “Pour milk” must precede
“Return milk bottle”. “Pour milk” and “Put glasses” may be done in any order.

Textual descriptions of ordering and timing relationships get to be very confus-
ing for behaviors of even modest complexity. Various diagramming techniques have
been developed to simplify these descriptions. Functional Flow Block Diagrams are
one such technique (Blanchard, Fabrycky 1990)(MIL-STD-499 1968).

In summary, the abstractions of behavior are:

• Functions

• Inputs and outputs to the functions
29

Introduction
• Ordering of the functions including: how inputs may trigger functions and how
inputs may establish conditions for selecting alternative paths in a complex
behavior

1.6 Organization of this Book

This book describes both the principles of modeling complex systems, and the process
of engineering complex systems. It provides a coherent example of modeling a system
to demonstrate how modeling is employed.

1.6.1 Principles of Modeling
In Chapters 1 through 10, the principles of modeling are developed from primary con-
cepts and abstractions and a core engineering process is presented. These primary con-
cepts and abstractions are familiar to everyday life. They correspond to basic concepts
used in the many engineering disciplines from software engineering through mechani-
cal and electrical engineering. Because of their generic nature, they form a foundation
that can be used in the transformation of models from systems engineering specifica-
tions to the notations and views needed by the design engineering disciplines.

The primary concepts are used to build the modeling principles and a description
of the core technical systems engineering process. The core process is shown to apply
to the several phases of development: concept phase, domain analysis phase, system
design phase. The generic applicability of the core process is a simplification in train-
ing, project execution, and in tool development and procurement.

The modeling concepts and techniques are described using both text and graphic
models. A variety of notations can be used for the graphic models. Although enthusi-
asts argue that particular notations are superior, for our purposes it is sufficient that the
graphic notation

1. is complete enough to capture the information used in systems engineering

2. that it is computer executable

3. that it has been published and is in use, and

4. that it is easy to learn and to use.

Unfortunately there is no single existing notation which satisfies all four requirements.
We do in this book what is commonly done in practice, that is to marry two different
methodologies, each with its own strength. For the capture of information about struc-
ture of things, a variant of the Object Modeling Technique (OMT) notation from soft-
ware engineering has been chosen, (Rumbaugh 1991). For the capture of information
about behavior the notation of Functional Flow Block Diagrams (FFBD) has been
chosen from systems engineering (MIL-STD-499 1968). These diagrams are not com-
puter executable and have been augmented with input/output information. They are
closely related to Alford’s Behavior Diagrams, (Alford 1977,1992).
30

Introduction
 Small examples are used to explain and clarify the concepts. An information
model is provided for each of the major systems engineering work steps to show the
information handled in that step and the relationships among the information items.
These models illustrate the information to be collected and transformed in each work
step. It shows how the pieces of information are interrelated. They also give basic
information for tool development and integration.

1.6.2 An Example of Modeling
Without examples, the descriptions of concepts and abstractions become an intellec-
tual activity with little feeling of how to use them in real world development projects.
In chapters 11 through 14 we examine a real world problem. Any real world develop-
ment of a complex system, however, is too large to capture in a portion of a book
because there is too much detail.

As a compromise, this part of the book describes a single small example prob-
lem modeled with the process and concepts described in the first part of the book.
Great emphasis is placed on the transition of knowledge from the system analysis and
design to design engineering. Handoff to software and database engineering is used
as an example. This emphasis has been selected for two reasons: there is increasing
pervasiveness of software and database development in modern complex systems and
there is a shorter tradition of systems engineers communicating with these disci-
plines.

The example problem is selected to be familiar to most readers. It is an Auto-
mated Teller Machine System. The treatment takes the problem from needs and con-
cept analysis through specification of components. It considers the effects on bank
structure that adding ATM may introduce. In this respect this ATM example is both
different and more comprehensive than similar examples used elsewhere.

1.7 Summary

The book concludes with a discussion of engineering of complex systems as it is done
today. The ability to engineer complex systems efficiently and with rigor is an impor-
tant asset for businesses and for nations. Presently there are excellent engineering
best practices for the development of large complex systems that have been proven
over time. These practices, however, are largely unsupported by automation and tool
environments. Parts of the process are automated, but the existing tools are not inte-
grated. A major reason for this is the extensive use of natural language to express
most of the design information. Natural language is ambiguous and, therefore, not
executable by people or computers.

Modeling, used efficiently, is the solution to rigorous and efficient engineering
of complex systems. Coupled with development of standards for information
exchange it can also address the problems of creating tool environments.
31

Introduction
Systems engineering can draw upon experience gained in other disciplines.
Other engineering disciples have closed their gaps by using executable models to per-
form their work. They have created the foundations for tool environments by employ-
ing models to define the information they use and how they transform that
information.

The basic abstractions needed for modeling in the engineering of complex sys-
tems are common to everyday experience. To proceed with modeling, these abstrac-
tions need to be defined, represented uniquely in a modeling notation, and applied. A
number of symbolic languages and graphic languages exist that can be used for these
purposes.

1.8 Exercises

1. Refer to “Put out the milk for dinner” example in “Basic Abstractions used with
Behavior” on page 29. Create your own graphic notation to express your solutions
to the following.

a. Create and draw a picture of an object (thing) with a place to record the object
name, the object properties, and the object functions.

b. Create a picture of the context of the person, as an object and as the system to
be described, who will put out the milk. Consider which objects are external
things in the context and which objects will be inputs or outputs in the behavior.

c. Create a picture for each of the functions, “Get glasses”, “Get milk bottle”,
“Pour milk”, “Return milk bottle”, and “Put glasses”

d. Show how the above functions are ordered in a graphic picture. Consider the
required order. Consider any additional ordering you may wish to impose.

e. Create a picture of how inputs and outputs are related to the functions.

f. Combine the pictures of exercises d. and e. to capture in one view the functions,
their inputs and outputs, and their ordering.

g. What different kinds of milk might you get from the refrigerator. Create a class
tree for these choices.

2. What problems arise is using the graphic notation developed in question 1?

3. What gaps, other than the modeling gap, exist in the process of engineering com-
plex systems?

4. What degree of formality and rigor is required in executable models?

5. In what ways can modeling speed development of a complex system?
32

Introduction
1.9 References

Alford, Mack. 1977 A requirements engineering methodology for real time systems,
IEEE Transactions on Software Engineering, Vol. 1, No. 1

Alford, Mack. 1992. Strengthening the systems/software interface for real time sys-
tems, Proceedings of the Second International Symposium of the National
Council on Systems Engineering, Vol1. 411, Seattle, WA. July, 1992

Blanchard, BF and W. Fabrycky, 1990. Systems engineering and analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Defense Systems Management College, 1990, Defense systems engineering manage-
ment guide, US Government Printing Office, 000802001202-5.

Gibbs, Wyatt W. 1994, Software’s chronic crisis. Scientific American, pp. 86, Sept.
Kronlof, Klaus. 1993, Method Integration: Concepts and Case Studies. Chichester:

John Wiley & Sons
Krugman, Paul. 1994. Does third world growth hurt first world prosperity? Harvard

Business Review, 72 July-Aug: 113-121
Liskov, Barbara, et. al. 1981. CLU Reference Manual, Lecture Notes in Computer

Science, ed. G. Goos and J. Hartmanis: Springer-Verlag
MIL-STD-499 1968, Functional Flow Diagrams, AFSCP 375-5, USAF, DI-S-3604/

S-126-1, Form DD 1664
Mirriam Webster 1981. Webster’s Third New International Dictionary, Philip Bab-

cock Gove ed., Springfield, Ma.: Mirriam-Webster Inc.
Norris, Guy. 1995. Boeing’s seventh wonder. IEEE Spectrum. October: 20-23.
Ohmae, Kenichi, 1995. Putting global logic first. Harvard Business Review, 73 Jan-

Feb:119-125
Porter, Michael E. 1992. Capital disadvantage: America’s failing capital investment

system. Harvard Business Review, 70 Sept.-Oct:65-82
Reich, Robert B. 1990. Who is us? Harvard Business Review, 68 Jan-Feb:53-64
Reich, Robert B. 1991. Who is them? Harvard Business Review, 69 Mar-Apr:77-88
Rumbaugh, James, Michael Blaha, William J. Premerlani, Frederick Eddy and Will-

iam Lorensen, William. (1991). Object-Oriented Modeling and Design, Engle-
wood Cliffs, N.J.: Prentice Hall

Schwab, Claus, and Claude Smadja 1994. Harvard Business Review, 72 Nov-Dec:40-
50

Sisodia, Rajendra S. 1992 Singapore invests in the nation corporation. Harvard Busi-
ness Review, 70 May-June:40-50

The New Encyclopedia Britannica 1980, Volume 6, pp. 860, 15th Edition
Thurow, Lester, 1992 Head to head: The coming economic battle among Japan,

Europe, and America, William Morrow and Company, Inc. New York
33

Introduction
Thurow, Lester, 1996 Head to head: The future of capitalism, William Morrow and
Company, Inc. New York
34

Basics of Structure
2.1 Introduction to Structure

This chapter focuses on structure and the primary ideas, or abstractions, which are
essential to its modeling. These abstractions are already familiar from everyday life.
The words we use in everyday speech, however, and the ideas they convey are ambig-
uous. This chapter clarifies the abstractions for representing structure and shows how
the ambiguity is resolved (Liskov 1981). It also presents the basis for producing exe-
cutable structure models which can be transformed into alternative views and verified
by computer. We use the graphic notation of Object Modeling Technique, OMT,
(Rumbaugh 1991) because it is simple, readily understood, widely used, and sup-
ported by tools. While this book focuses on the abstractions needed for the engineer-
ing work, other notations can be used if they span the needed abstractions.

2.1.1 Structure and Behavior
Before delving into the semantic makeup of structure and how to model it, we first
describe the importance of separating structure from behavior. Figure 2-1., Behavior
and Structure, shows this relationship between these two concepts.
35

Basics of Structure
These two components, structure and behavior, are the essential views of any system
description. Behavior is the what it does part of the system description and structure is
the how it is built part.

These two views, with a mapping of behavior onto structure, form a system
description. If the desired behavior is defined separately from a structure, then alterna-
tive structures can be readily identified and the desired behavior can be mapped onto
each of them, so they each exhibit that behavior. A trade-off analysis can then be per-
formed to pick the best solution. This is a critical best practice in the engineering of
systems because it finds a near-optimal solution while guaranteeing the desired behav-
ior emerges from the system design.

 Not all engineering disciplines place strong emphasis on trade-off among alter-
natives to find a near-optimal solution. Some of those disciplines mix behavior and
structure together in the views they use of their systems or components. That mixing
works for those disciplines, but it makes trade-off more difficult because there is no
independent description of what the system is to do.

System

Description

Behavior

Description
Structure

Description

(what it does)
(how it is built)

mapped
onto

Figure 2-1. Behavior and Structure
36

Basics of Structure
2.1.2 Basic Views of Structure
The key views of information used to express structure are things or objects, their
internal attributes, and the associations among them. Figure 2-2., Description of
Structure: The Elemental Views, is a picture of the relationships among these basic
views and their relationships to the description of a system’s structure.

Object classes are the primary building block for all structure models. They model the
elemental pieces of a system’s structure. The primary associations among object
classes are:

• Classification Trees, which represent categories of things and the relationships
between the categories,

Structure

Description

(how)

Object

Parts Tree

how parts
interconnect

how environment
connects

Figure 2-2. Description of Structure: The Elemental Views

Interconnection

Context
Description

Classes

Synthesis

Class Tree

Generalization
Specialization

built from

kind of

Assembly
Description

Decomposition
37

Basics of Structure
• Interconnection, which represent the connections among things and between
the environment and the system, and

• Parts Trees, which describe how things are composed to make bigger things.

These views are all discussed in more detail later in this chapter along with the OMT
notation for them. The concepts and notation are illustrated with an example.

2.1.3 Executable Models of Structure
Executable models can be executed either by a computer or manually by an engineer
to interpret the models, check for accuracy, check for completeness, or translate them
to notations used by other disciplines. Each kind of item in the model has a single
meaning and is represented by a unique symbol. The information in the models is suf-
ficient to fully describe the engineering work at hand.

When non-executable models are used with computer tools, the models can be
read and interpreted by trained engineers. There is some ambiguity in the models and
the interpretations by different engineers may vary somewhat. The computer cannot
be used to interpret the models, check for accuracy, check for completeness, or to
translate them to notations used by other disciplines.

An executable part tree can show the breakdown of a system into its assemblies,
its least replaceable units and its smallest parts. Such a list can be executed to generate
the parts needed at any stage of assembly or the parts required for field service of the
system. If properties of the parts are associated with their object class descriptions,
then the parts list can be executed to calculate properties such as cost or weight for the
entire system, for subassemblies, or for least replaceable units.

An executable interconnection diagram can be used to ensure that every part,
object class, has at least one interconnection. When a system is developed hierarchi-
cally with several levels in its parts list, the interconnection diagrams can be checked
to ensure that the multitude of interfaces at the lower levels are consistent with the
interfaces defined at higher levels. If the interconnection diagram represents the wir-
ing list for electronic components, then the computer can do automated layout of the
components by referring to a library which contains a physical description of the elec-
tronic components and the design rules that apply.

An executable classification tree represents the kinds of parts that may be chosen
for a system. It can be used as the taxonomy for a browsing facility to search a library
of parts for the kind of part that is needed. It can be used as the basis for the menus of
a human-machine interface. It can be used in software with an appropriate compiler to
generate the message passing among software objects. It provides the basic informa-
tion needed for reuse.
38

Basics of Structure
Consider a scenario for electronic circuit design. An electrical engineer designs
a circuit for implementation on a circuit board. The circuit elements are chosen from
a classification of types of circuit elements. This choice produces a parts tree. The cir-
cuit is defined by establishing their interconnections among the circuit elements.
Because the behavior of each element is known, the electronic behavior of the circuit
can be calculated. The parts which can be used for these circuit elements are chosen
from a classification that organizes the parts library. The part pin connections can
now be related to the circuit element interconnections, and the physical properties of
the parts can be obtained from the part library. Since the geometry of the parts is now
know, they can be automatically laid out on a circuit board according to design rules
using the interconnection data which has been preserved and transformed through
these steps. Now that the physical interconnection detail has been added, the resis-
tance and capacitance of the interconnections can be extracted and combined with the
electrical properties to compute actual timing conditions in the circuit. When timing
is satisfactory, the information can be transformed into masks for forming the circuit
board, drill tapes for automatically drilling the part mounting holes, and the instruc-
tions for automatic insertion machines to insert parts into the boards. Throughout this
scenario the three fundamental associations of classification trees, parts trees, and
interconnection are executed repeatedly, with additional information added at each
step, and with information transformations applied for application to particular imple-
mentation capabilities.

In a different engineering domain we can see the same need for development of
executable structural models. Modern software engineering practice calls for soft-
ware engineers and database designers to determine the interactions between their
respective parts of the system before committing to any particular implementation.
The way data is stored and partitioned, the structure of the database, has a profound
effect on the system’s speed and performance, the behavior of the system. The tools
used to capture the structure information contain generators which generate the code
declarations and the database schema from the models. These declarations and
schema can then be executed and used in trade-off and optimization decision making.
Once final trade-off decisions have been made the resulting generated code and
schema becomes part of the system’s implementation.

As the examples demonstrate, when professionals decide to use executable
models and chose one, or a few, semantically well defined graphic or symbolic lan-
guages for their work, automation can be introduced into the process. This type of
automation aids the designer in choosing the best design. It produces magnitudes of
quality and productivity improvement. The rigorous transformations of information
make sure that the final product implements the design faithfully. With the addition of
39

Basics of Structure
executable behavior information, discussed in the next chapter, to the structure infor-
mation, simulations of performance can be performed at many stages of the design
and implementation to ensure that the very first implementation works as desired.

Examples of graphic languages are:
• Buhr, (Buhr 1984), or Booch, (Booch 1983), diagrams for designing Ada soft-

ware

• electrical schematic diagrams

• control engineering block diagrams, and

• object modeling technique (OMT) diagrams for software and databases.

Examples of semantically well defined symbolic languages are
• COBOL or C++, software design languages,

• VHDL, a hardware description language, and

• Express (which was used to define geometry standards).

Unless systems engineers capture their requirements and specifications of behavior
and structure in a precise and executable language, their requirements and specifica-
tions will remain ambiguous and error prone. While this status quo persists, each
downstream engineering discipline will have to continue interpreting natural language
specifications instead of receiving data in their particular notation. These manual
interpretation efforts are not only costly and error prone, they waste a valuable
resource, skilled engineers’ time, which would be better spent designing and solving
real engineering problems. When the systems information is described precisely, auto-
mated tools will ensure that the correct information is provided to the component
engineers quickly, accurately, and unambiguously.

There are a large number of notation suitable for systems engineering concepts.
Criteria for evaluating the various notations are: ease of training, ease of use, match
with organization culture, and adequacy of tool support. In performing this evaluation
it is essential to understand the underlying semantic constructs required to do systems
engineering. Once the base concepts are understood, then the tools, views, and repre-
sentations of information that can help the systems engineer can be judged. In this
book we have chosen to use the OMT notation, with minor adaptations to better repre-
sent the systems engineering structure information.

The remainder of this chapter introduces the semantics and OMT notation for
structure and illustrates it by modeling the structure of a pocket knife. The semantics
and notation for modeling behavior will be considered in the next chapter.
40

Basics of Structure
2.2 Example - Modeling a Pocket Knife

In order to introduce OMT notation for structure and to make it clear what is meant
by the written descriptions, we will walk through the steps taken to model a well
known physical object. We have chosen a pocket knife as our subject. The particular
knife we are modeling, shown in Figure 2-3., Ordinary Pocket Knife, has two blades,
a can opener/small screwdriver, a bottle opener/large screwdriver, an awl, a cork-
screw, and a key chain. All of these parts of the knife and the relationships among
them need to be captured, unambiguously, in our model.

2.3 Objects and Classes

The next several sections introduce the various object modeling concepts and give an
example of each concept as applied to the pocket knife. We also give a brief overview
of the OMT notation for each concept and note where our usage departs from the gen-
eral practice. See Object Oriented Modeling and Design for a more complete treat-
ment (Rumbaugh 1991). This formal method, when coupled with other modeling
techniques described elsewhere in this book, form an executable model of the entire
system. This model can then be tested and verified for correctness. We begin with
objects.

2.3.1 Definition
What are objects? In general they are things, physical or logical things. Looking
around a room you can see many objects: chairs, tables, carpets. These are all obvious
examples. There are also some less obvious objects: openings, color, and airflow.
Choosing the right set of objects to model for a particular problem or to include in a
system design is an art. There can be many potential right sets of objects. Trade-off
analysis performed after the mapping of behavior onto the object structure guides the
final choice of objects to include in the system implementation.

Figure 2-3. Ordinary Pocket Knife
41

Basics of Structure
When we speak about objects we talk of classes of objects and instances of
objects. Classes define a category of things, where all the member of share certain
structural and behavioral traits. Trucks, Cars, and Planes are all examples of classes.
All trucks share certain properties as do all planes. Instances define a specific object
such as “Bill’s Red Truck.” They are members of a class and as such share the com-
mon behavior and properties but, they also have a distinct identity apart from the
class.

 Classes can be general such as “Vehicles”, which would include cars, planes, tri-
cycles, and all sorts of other types. Classes can also be very specific such as “Internal
Combustion, four wheeled, 2 passenger automobiles.” In developing an object model,
trade-offs need to be made about the amount of detail that is included in a class defini-
tion. The more specific it is the easier it may be to use in a particular implementation.
This weighs against the portability and reusability of the object design. It may be hard
to adapt to an alternate architecture if the structure model is too narrowly defined.

2.3.2 Modeling Objects in OMT
Object models are used to identify and capture the information pertaining to an object
class and to define the associations between object classes. The information captured
includes:

• Class Name,

• Attributes (properties), and

• Functions (methods, operations) performed by object class

By using Object Models a systems engineer can formally express the composition of
an object class and its associations with the other objects classes in the system. The
model of the class then embodies the specification and requirements for the systems
structure. As the class model is developed it is important to record the rational for
design decisions along with the model.

 Figure 2-4., Class Definition Box, shows how the class definition is depicted
using OMT.

Functions

Class Name

Attributes

Figure 2-4. Class Definition Box
42

Basics of Structure
Class Name
The class name is the primary identifier by which the existence and purpose of the
class is conveyed from the designer to potential users of the class. The only semantic
rule associated with a class name is that it be unique. This ensures that the class is dis-
tinguishable from all other classes. Practicality, however, dictate that a name appro-
priate for its associated structure and functionality be chosen. As with choosing
which classes to use in a system, the choice of a name is not an exact science. The
name should be broad enough to cover most of the potential uses of the classes, yet
narrow enough not to overstate the capabilities of the class. There are a variety of
naming conventions in use, all equally valid (Young 1990). One convention should be
adopted for all objects within a system.

Class Attributes
Class attributes are the properties shared by each instance of the class. The list of
attributes for a class must include all of the properties of the class that are needed for
the engineering problem at hand. For a class that models a physical thing such as a
car, the attribute list will include items such as weight, acceleration, fuel consump-
tion, turning radius. The attributes are the kind of information typically found on a
spec sheet.

Attributes are used in two ways. They can model calculated information or local
information. For the class car, the attribute acceleration will be a function of attributes
of parts used to build the car, like weight, engine torque, transmission ratio, and tire
diameter. In order to calculate acceleration for the car values must be known for these
attributes. The system engineers may have an established goal for acceleration if it is
important to customer needs and wants. In this case, they must budget design targets
for weight, engine torque to the designers of the components. They must monitor the
actual values achieved in design, and finally validate acceleration on the implemented
product. The other attribute usage is for local information. These attributes store the
rest of the information that must be known about an individual instance. In the case of
the class car, fuel type is such an attribute. One instance may have the value gasoline
for its fuel type and another may have the value diesel.

An attribute is more than just a name. Type information is generally included in
addition to the name. They may also have default values which are used to initialize
instances. These defaults persist in the instance until a better value has been estab-
lished.

Choosing which attributes to include in a class definition is part of the art of
object modeling. Only the highly relevant attributes needed by engineers for the prob-
lems and questions they must answer should be included as part of the object class.
Other, secondary attributes are often better left to other parts of the structure. If, while
defining classes, one class is found to contain a collection of weakly related attributes
then the structure as modeled is probably lacking and needs to be reworked.
43

Basics of Structure
Class Functions
A Class can be passive, having no functions, or it can be active, having a variety of
functions. The functions detail what behavior the instances of the classes can perform.
Physical objects that are active generally have an energy source that fuels their activ-
ity. A variety of words are used synonymously with function: method, operation,
activity. In the parlance of object oriented structure design, method is most commonly
used.

 As with attributes, choosing which functions are part of a class is a mixture of
science and art. Some functions naturally belong as part of a class. Others are not so
obvious. Car class would be likely to have start, stop, accelerate, and turn functions
among others. Our pocket knife might have open tool, close tool, cut and sharpen
methods. Modeling refines the choice of methods.

It is only as a class is viewed in relation to the rest of the system and in relation
to the desired behavior (functional requirements) for the system that judgements can
be made about which functions should be included or excluded. Some functions for a
class are discovered when the desired behavior for the system is mapped or allocated
to the object classes from which the system is to be built. For the pocket knife exam-
ple, the function cut may not be a part of the class pocket knife at all, it may be part of
a class blade or even class person.

The assignment of functions to a class define its interfaces with the rest of the
parts in a system. They serve to hide all of the internal structure and behavior details
of the class. This leads to a great degree of flexibility and reuse potential. Mechanical
engineers have embraced this black box encapsulation since Joseph Bramah designed
and manufactured his locks in England in 1784 using interchangeable pars, (Encyclo-
pedia Britannica Vol. 11, pp.11, 1980). Independently Eli Whitney designed and mass
produced muskets with interchangeable parts for the US government in 1801 in the
United States (Encyclopedia Britannica Vol. 19, pp.822, 1980). The rise of object ori-
ented software design has led software designers to adopt a similar approach. In the
modern development of large systems, industry standards, referred to as protocols, are
often defined for interfaces so that many vendors can supply parts of the system yet
maintain proprietary designs for the interior structure and performance of the parts
they supply.

Instances
Instance diagrams are similar to class diagram with the exception that they describe
actual objects or things and not just type definitions. Figure 2-5., Instance Diagram,
shows the graphic notation used for an instance diagram in OMT.
44

Basics of Structure
An instance diagram has rounded edges on its outline and shows the instance’s name
and class along with the attributes and the instance’s value for the attribute. In an
instance diagram you can have many instances with the same class.

2.3.3 Example - Pocket Knife, Object Class Definition
Figure 2-6., Initial Class Definition for Pocket Knife, shows a first pass design for the
pocket knife class.

Since we are modeling a pocket knife, that is the name we will give to our class
definition. As our understanding of the design evolves, so may the name. From exam-
ining the knife we are modeling, six attributes are chosen to characterize it. The
attributes Number of Blades, Number of Tools, and Tool Types are all used to charac-
terize the elements that are part of the pocket knife. Sharpness and Wear characterize
the performance of the pocket knife in use in its environment. Color is an appearance

Class Name

Attribute1_name = value

Instance

Figure 2-5. Instance Diagram

Attribute2_name = value

Instance Name

Figure 2-6. Initial Class Definition for Pocket Knife

Hold tool open

Pocket Knife

Number of Blades

Hold tool closed

Color

Number of Tools

Tool Types

Sharpness

Wear
45

Basics of Structure
attribute. Later we will consider whether all of these attributes are appropriate to this
class, or whether some of them are more appropriate to some of the classes from
which it is built or to which it relates. Other attributes may also need to be added such
as Strength or Corrosion Resistance.

The functions, (methods) for Pocket Knife will be considered thoroughly in
Basics of Behavior on page 67. In this chapter a few of the ideas concerning assign-
ment of functions to objects are developed, particularly where structure considerations
contribute to the understanding of behavior and the assignment of functions to objects.
The functions for Pocket Knife involve holding the tools open or holding them closed.
This is not obvious because one might initially associate cut, turn, carve, whittle and
similar functions with pocket knife. However, what distinguishes a pocket knife as a
whole is that it holds the tools closed in the handle, and then holds tools open when
they are in use. There is a physical mechanism which stores and releases energy to do
this, a spring. These two functions are not a result of any one part, like the spring, but
are the result of the assembly of the parts into the whole with interfaces among the
parts which have been carefully designed to give the assembly this emergent behavior
which is a result of several parts working together.

In contrast, functions like cut or turn are the result of the application of a particu-
lar tool to a work piece with which it interfaces properly. A can opener tool cuts open
a can and a phillips head screw driver tool turns a phillips head screw. Similarly, func-
tions like carve or whittle are appropriately assigned to the person who is manipulat-
ing the pocket knife against the work piece because they refer to the purpose and
control of the overall activity. The important point to understand is that the full
description of an object includes the identification of the functions that object per-
forms, and that the analysis needed to make such an assignment involves study of both
structure and behavior.

2.3.4 Example - Pocket Knife Instances
Having defined the pocket knife object class, we can now look at instances of the
class. To do this we use an instance diagram. Figure 2-7., Several Instances of Pocket
Knife, shows how this looks.The four instances shown are all pocket knifes but they
are distinct from one another.
46

Basics of Structure
The same functions can be performed by each of the instances since they are the
same class.

2.4 Aggregation

Most things in the world are built from other things, certainly this is true of complex
systems. Aggregation or a Parts Tree is the abstraction used to represent the parts
which comprise a bigger thing. This powerful abstraction allows us to think about the
whole thing, think about the set of parts that comprise it, or focus on one of the parts
that is used to build it. When our thought process goes from the whole to its parts, the
process is considered to be decomposition or partitioning. When our thought process
goes from the parts to the whole, the process is considered to be synthesis or composi-
tion. Aggregation represents the tree of parts. Engineers can work top-down, bottom-
up, or middle-out.

2.4.1 Modeling Aggregation in OMT
Figure 2-8., Aggregation Used to Model the Structure of the Universe, shows how the
aggregation association is depicted graphically in OMT. In this case, the universe is at
the top of the aggregation hierarchy, with each tier in the tree representing a finer
granularity of parts, until the very bottom which models the fundamental particle
class. The diamond on the lines connecting a class to its constituents denotes the asso-
ciation as being one of aggregation. This type of tree is called an AND tree.

Aggregation has been used to represent two useful but, inconsistent concepts:

Figure 2-7. Several Instances of Pocket Knife

 Pocket Knife

Number Blades = 2
Color = blue
Number of Tools =3
Tool Types = (knife, can opener,

Sharpness = 90%
Wear = 23%

Dave’s Knife #2

Pocket Knife

Number Blades = 2
Color = red
Number of Tools =3
Tool Types = (knife, pick, awl)
Sharpness = 60%
Wear = 40%

Dave’s Knife #1

Pocket Knife

Number Blades = 2
Color = red
Number of Tools =3
Tool Types = (knife, pick, awl)
Sharpness = 90%
Wear = 23%

Carol’s Knife
 Pocket Knife

Number Blades = 2
Color = red
Number of Tools =3
Tool Types = (knife, pick, awl)
Sharpness = 90%
Wear = 23%

Jim’s Knife

 bottle opener)
47

Basics of Structure
1. To mean built from, a whole assembled from its parts and requiring all parts to
be present.

2. To mean contains a, a whole containing the indicated parts, but existing in the
absence of the parts.

Aggregation drawn with an open diamond symbol is used to represent built from.
In this text we will use a solid black diamond for the abstraction contains a. This is an
extension beyond traditional OMT.

The diagram in Figure 2-8., Aggregation Used to Model the Structure of the Uni-
verse, depicts aggregation as a tree. In the real world there are many aggregation trees,
there are also many aggregations that are networks rather than trees. Consider if the
universe diagram were to be fleshed out. Every class on the penultimate tier has an
aggregation relation (made up of) with fundamental particle. They also would have
other aggregation relations with higher order classes (is part of). Thus aggregation
relations can become a network of relations amongst the existing classes. The system
of interest may be anywhere within this vast network. The engineer uses only that
small portion of the network needed for the problem. The same modeling abstractions
are used for all tiers.

2.4.2 Example - Pocket Knife with Aggregation
 Aggregation in object models is a way to represent the relationship between classes.
The pocket knife was shown in Figure 2-3., Ordinary Pocket Knife. An expanded
view of it is shown in Figure 2-9., Pocket Knife Disassembled. From this view we can
see that the knife is built from two plastic side panel, a metal case built from plates,

Universe

1st Decomposition Tier

aggregation = built from, AND tree

2nd Decomposition Tier

Fundamental
Particles

Last Decomposition Tier

Figure 2-8. Aggregation Used to Model the Structure of the Universe
48

Basics of Structure
springs and rivets, six tools, and a key chain. This is the structure that we should
model if we are to end up with a flexible and broadly useful design. We will use
aggregation to describe it.

The metal case is secured with a rivet, and three rivets are used for hinges for the
tools. In system design it is important to determine how the parts are related to sub-
assemblies until the final object is assembled. The parts tree, however, can be drawn
in several different ways, each with its own use. If one only needs to collect all the
parts, it is sufficient to go from pocket knife to all the parts in one tier. For our use in
modeling the structure of the pocket knife we choose to show all the aggregate levels
of structure. This is shown in Figure 2-10., Part Tree for Pocket Knife.

Figure 2-9. Pocket Knife Disassembled
49

Basics of Structure
The new design mirrors the observation we made looking at the picture of the disas-
sembled knife. The plates, springs, and rivets comprise the Metal Knife Case. This in
turn along with the tools and the Key Chain comprise the Metal Knife Assembly.
Finally, this assembly and the Plastic Side Panel aggregate to form the Pocket Knife.
At each of the diamonds, there is an assembly.

Figure 2-10., Part Tree for Pocket Knife uses a different view of the classes than
we saw in the previous section. In it we have chosen not to show all of the attributes
and methods of the classes. To proceed further with the design, this level of detail
should now be added. We will do some of that investigation but leave the complete
design as an exercise for the reader.

Taking the attributes first, consider Color. We find that this attribute no longer
belongs to Pocket Knife but rather should be moved to the Plastic Side Panel class.
Additionally, this class needs to augmented with an attribute that deals with the logo.
If we look at a different attribute of the original class, Number of Blades we find that it

Pocket Knife

Plastic
Side Panel

Metal

Metal Side
Plate

AssemblySpringChannel
Plate

Screwdriver
Bottle Opener

Can
Opener

Large
Knife

Small

Cork
Screw

Key
Chain

AwlMetal

Knife

Rivet

Hinge
Rivet

Knife
Assembly

Knife
Case

Figure 2-10. Part Tree for Pocket Knife
50

Basics of Structure
is no longer necessary. The aggregation structure clearly shows how many blades the
knife has. It is eliminated. The remainder of the original attributes must be similarly
considered.

Now consider the methods from the original design. Tool specific functionality
such as “cut” and “open can” need to be moved out of the Pocket Knife and into the
appropriate tool classes. With this change we begin to see the an improved, more
flexible design. Changing which tools are included with the knife is now just a matter
of aggregating a different set. The methods of the knife class are not affected by the
change. In the original design all of the methods of Pocket Knife would need to be
updated to accommodate this change.

We should revisit the name of our class at this point. We have explicitly mod-
eled the tools that make up this knife. This has actually reduced the scope of the
pocket knife class somewhat. The model, as it stands, is more appropriately named
Six Tool Pocket Knife. Later on we will show how to model a more flexible design
that covers a wide range of tooling options without needing to change the aggregation
relations. Figure 2-11., Part Tree for Six Tool Pocket Knife shows the design as it cur-
rently stands, with the attributes and functions redistributed as discussed above.
51

Basics of Structure
The aggregation used here is more general than a one tier picture that goes
immediately to all the parts. One can change the kind of pocket knife by substituting
different kinds of tools among the six that can go in the tool. One can make the knife
bigger and able to accommodate three more tools by adding an additional spring and
channel plate to the Metal Knife Case. This type of design and style of showing aggre-
gation promotes reuse, which has been called family-of-parts for many years in

Six Tool

Plastic
Side Panel

Metal
Knife
Assembly

Metal Side
Plate

AssemblySpringChannel
Plate

Screwdriver
Bottle Opener

Can
Opener

Large
Knife

Small

Cork
Screw

Key
Chain

AwlMetal
Knife
Case

Knife

Rivet

Color
Logo

Wear
Torque

WearWear

Wear

Sharpness

Wear
Sharpness

Wear

Pocket Knife

Hold Tool Open
Hold Tool Closed

Torque

Hinge
Rivet

Stiffness

Figure 2-11. Part Tree for Six Tool Pocket Knife
52

Basics of Structure
mechanical systems. Many different knives can be assembled from the same set of
parts by varying the number of channel plates and springs, and by selecting among
tools that can be used.

Aggregation is modeled as a relationship between classes. Thus the Six Tool
Pocket Knife class is associated with the Metal Knife Assembly class. Instances share
in this association as they share in all other aspects with their class definition. Thus
Dave’s Six Tool Pocket Knife will be associated with Dave’s Metal Knife Assembly
and Dave’s Plastic Case and instances of all the other classes with which Six Tool
Pocket Knife has an aggregation relationship.

2.5 Cardinallity

It is very desirable to have another abstraction to show the choices and constraints
one has in selecting among objects. The aggregation tree is an AND tree that shows
that a class is built from part 1 and part 2, and part 3. It is not sufficiently detailed to
capture binary information noting the existence or non-existence of connections in
these trees. Each of the situations below merits further description within the struc-
tural model to capture what would otherwise be expressed in hard to digest prose or,
more probably, never be explicitly stated.

• Exactly one instance is a part of a class which aggregates it.

• Potentially many instance are included as parts.

• The part may or may not be included.

• An exact number of parts is required.

• A range of parts is required.

2.5.1 Cardinallity in OMT
Figure 2-12., Cardinallity and Conditions Expressed in OMT, shows how each of
these are depicted within the graphics of the OMT methodology.
53

Basics of Structure
.

Symbols are used for the frequent cases of many and optional. The association is
annotated numerically for other cases.

2.5.2 Example
With the additional flexibility given by the introduction of the cardinallity abstraction
we can be more specific in our model of the Six Tool Pocket Knife. Several facts
about the knife have been left out of the model so far. These involve the number of
each part that is required. Figure 2-13., Part Tree for Six Tool Pocket Knife with Cardi-
nallity shows the updated model with this information added.

Class

Figure 2-12. Cardinallity and Conditions Expressed in OMT

Class

Class

Class

Class

Exactly one

Many, zero or more

Optional, zero or one

One or more

Numerically specified

1+

1-2, 4
54

Basics of Structure

2.6 Classification of Objects

The next major abstraction for describing structure which we will discuss is classifi-
cation. Put simply, classification is a way of grouping similar things. Classifying is
one of the earliest skills developed by children. They learn to understand the world
around them by developing categories for all that they experience: fun things, hot
things, things that get me in trouble. Given that this skill is developed early and con-
tinues to be reinforced throughout life it would be foolish not to exploit classification
for understanding and designing systems. It has been employed for centuries in vari-
ous ways:

• Library catalogues

• Layout of items in a store

• Grouping of financial items in accounting

• Providing products that can be customized

Pocket Knife

Plastic
Side Panel

Metal
Knife
Assembly

Metal Side
Plate

AssemblySpringChannel
Plate

Screwdriver
Bottle Opener

Can
Opener

Large
Knife

Small

Cork
Screw

Key
Chain

AwlMetal
Knife
Case

Knife

Rivet

Hinge
Rivet

2

2 2

3

Figure 2-13. Part Tree for Six Tool Pocket Knife with Cardinallity
55

Basics of Structure
• Designing with a family of parts

Depending on which direction you look at it, classification can be seen as Generaliza-
tion or Specialization. In generalization we look at a collection of objects and use
common attributes (properties) or behavior to group things together. Sneakers, boots,
and slippers can all be generalized as shoes. In specialization we take the opposite
view. We break down a general class into smaller ones which share the attributes of
the general class but have different attributes which distinguish one from another.
Shoes are specialized as sneakers, boots, and slippers.

The groupings, classes, are used to discuss, store, or locate a group of things.
The difference between finding something in a department store or in a flea market is
that the merchandise in the department store has been classified and arranged geo-
graphically according to well understood classes. To get sneakers one goes to the shoe
department of the department store or to a shoe store.

The attributes and functions of a general class are all present in the more specific
classes that are descendent from the general class.

2.6.1 Classification in OMT
As with the other elements of structure, it is useful to have a graphic notation for clas-
sification to augment text. Figure 2-14., Classification Tree for Pocket Knife, shows
how OMT represents classification with a triangle. In OMT the class at the root of the
tree is known as a superclass while those at the bottom of the tree are called sub-
classes.

Gravity
Knife

Lockblade
Knife

Switchblade

Pocket Knife

Knife

kind of, OR Tree

Store tools in handle

Six Tool

Figure 2-14. Classification Tree for Pocket Knife

Pocket
Knife
56

Basics of Structure
2.6.2 Example - Classification of Tools
Going back to our example, we note that there are more kinds of pocket knifes than
we have considered so far. The six-tool pocket knife is but one of these. Others
include:

• Switch blade knives, which open and lock the blade on depression of a release

• Gravity knives, which open the knife by gravity and lock it on depression of a
release

• Lock blade knives, which are opened by the user but lock open

• Multi-Tool pocket knives, which are opened and closed by the user. The knife
holds the tool open or closed, but does not lock it in position.

Figure 2-14., Classification Tree for Pocket Knife classifies pocket knives based
on the way they are opened and held open. Each of the subclasses inherits common
features from the parent class. In this case they all inherit the function Store the tools
in handle. Each of these subclasses has unique functions and attributes which distin-
guish it from the other subclass members. The four subclasses differ in the manner in
which tools are opened and are held open.

In our example, we have designed a Six-tool Pocket Knife. We noted, however, that
perhaps there is a better way to model this design. Classification can be used to this
effect. Figure 2-15., Types of Tools for Class Tool gives a classification of sixteen
possible tools to use in a multi-tool pocket knife. They all are tools and as such share
whatever common attributes are modeled as part of the tool class. For this example,
that would probably include Size and Attachment Point since all the tools are required
to fit within the storage space provided in the handle of the pocket knife.
57

Basics of Structure

 The Tool class introduced above can now be inserted into the aggregation tree
for the Six Tool Pocket Knife in place of the direct aggregation of the individual tools.
We have now succeeded in extending our design from a very specific Six Tool Pocket
Knife that required a change in the structure model to change the tools which were
included to a family of Six Tool Pocket Knives where 8008 distinct Six Tool designs
are possible without requiring a change to the structure model.

By combining the new Tool class with a change in the cardinallity constraints on the
design we can generalize the model even further. The simple abstractions used to
describe structure are powerful enough to describe a product family that extends
beyond six tool pocket knifes. Analysis of the structure model shows that one can
build knives with three, six, nine, or twelve tools by adding springs and channel
plates. Knives for a variety of purposes can be composed by choosing among the six-
teen tool types. As we make this change we will need, once again, to update the name
of the class. This time we move to a more general name of Multi-Tool Pocket Knife.
The model of this Multi-Tool shows a variable n used for cardinallity. In this case n
can be any integer value from one to five. Figure 2-16., Multi-Tool Pocket Knife Fam-
ily shows the resulting design.

Screwdriver
Bottle Opener

Can
Opener

Large
Knife

Small

Cork
Screw

Hook

Awl

Knife

Tool

Phillips
Screwdriver

Reamer

ScissorsMagnifier PliersWood Saw

Fish Scaler Metal Saw

Chisel

Figure 2-15. Types of Tools for Class Tool
58

Basics of Structure
It is apparent that one can use aggregation and classification to represent just the
collection of parts needed to make a specific knife, the assembly of a particular knife,
or an entire family of knives and their assembly. No one of these alternatives is better
than another. It is efficient to use the simplest description that captures all the infor-
mation needed for the problem at hand.

Multi-Tool
Pocket Knife

Metal
Knife
Assembly

Metal Side
Plate

AssemblySpringChannel
Plate

2 n-1 n

Tool
Metal
Knife
Case

Rivet

Screwdriver
Bottle Opener

Can
Opener

Large
Knife

Small

Cork
Screw

Hook

Awl

Knife

Phillips
Screwdriver

Reamer

ScissorsMagnifier PliersWood Saw

Fish Scaler Metal Saw

Chisel

Key
Chain

3n

Plastic
Side Panel

2

Hinge
Rivet

3

Figure 2-16. Multi-Tool Pocket Knife Family
59

Basics of Structure
2.7 Interconnection of Objects

Objects do not stand alone. They work together in a cooperative manner to achieve the
goals of the designer. Interconnection is the abstraction we use to think about how
things (systems and objects) interrelate physically or logically.

2.7.1 Definition
Objects interact with some but not all of the other objects in their environment. Each
of the interactions is modeled as an interconnection. Each interconnection has a num-
ber of properties that also need to be modeled. Chief among these properties are the
role that the interconnection models and the information transfer which takes place at
the interconnection. Interconnections between a system and its environment describe
its context. Interconnections internal to a system describe its assembly.

Roles and Interconnection
Every interconnection has a role associated with it. Roles define the reason for two
classes to have an interconnection. Understanding of the roles used in interconnection
is key to understanding the corporate behavior of the classes. Roles are by their nature
symmetrical. That is if class A has a role association with class B, then class B has a
corresponding role association with class A. In some cases as we will see later the role
is secondary to the information being transferred.
Some examples of role associations:

• A person holds a knife / the knife is held by a person

• A generator powers a motor / a motor loads a generator

• A parent supports a child in college / a child in college is supported by a parent

• Requirements trace to functions / functions trace to requirements

Input/Output and Interconnection
Input and Output along an interconnection describe the flow of information, material,
or energy among the objects. Although every interconnection has a role associated
with it, the same is not true of Input/Output. Only active objects which encapsulate
functions that transform information, material, or energy send something which is out-
put from one object and input to another. Interconnections exist between passive
objects but they have no associated I/O. From the standpoint of developing an execut-
able model capturing the I/O information is critical. The I/O definition contains infor-
mation detailing the type and quantity of stuff being generated and consumed. This
along with numbering and conditional markers make the model executable.

 Some examples of Input/Output associated with interconnections are:

• A person applies force to a knife, measured in newtons
60

Basics of Structure
• A telephone caller speaks to a callee/the callee speaks to the caller, measured
in information content

• A generator delivers current to a motor, measured in amperes

• A parent gives money to a child in college, measured in dollars

Input/Output has directionality and may flow in one direction between objects,
or in both directions.

Not every interconnection has input/output associated with it. For derived
requirements and the parent requirements from which they are derived there is a logi-
cal reason for interconnection, but there is no input/output associated because
requirements are passive objects, and do not generate outputs or consume inputs

Some engineering disciplines, like electrical engineering think primarily about
interconnection and input/output. Others, such as database engineering, deal prima-
rily with passive objects (information items) and think primarily about interconnec-
tion and roles. In systems engineering both are needed.

2.7.2 Interconnection in OMT
In OMT interconnection is represented graphically as a line between the object
involved. The line is annotated with the reason for the interconnection and sometimes
the inputs and outputs. Cardinallity and conditionallity is also represented on inter-
connections. The same cardinallity notation is used for these that is used with aggre-
gation. Figure 2-12., Cardinallity and Conditions Expressed in OMT, summarizes this
notation. In OMT interconnections are called associations. The aggregation and clas-
sification relations are also called associations in OMT.

2.7.3 Example - Multi-Tool Pocket Knife Context
Classes have an environment in which to operate. This environment is called the con-
text of the object. By modeling the context we will gain additional insight into the
working of the object we are designing. Interconnection establishes the boundary
between the thing and the context in which it is used. In software terms, it defines the
application program interface, API. In the physical realm, it is the boundary defini-
tion for differential equations or the physical coupling to other objects.

One way to approach development of the context of a system is to think through
its use or operation in its environment. When written in text in narrative form this
information is often called an operations concept. A simple narrative for a pocket
knife follows.

“She reached into her right pocket and took out the pocket knife. She
opened the large blade and grasped the knife firmly. She picked up the work
piece in her other hand and whittled it to the desired shape. She put down the
work piece, closed the knife, and put it back into her pocket.”
61

Basics of Structure
Note that the only actions as written are performed by the person. The knife
blade is acting as a pressure transformer which receives 10 or 15 pounds of force on
the handle and transforms that to tens of thousands of pounds per square inch of pres-
sure where the blade edge pushes against the workpiece surface. But there are actions
performed by the knife that were not written down. Here is the same operations con-
cept, augmented with the knifes actions.

She reached into her right pocket and took out the pocket knife. She opened
the large blade with her thumbnail against the closing force of the knife
and the knife held the blade open. She grasped the knife firmly. She picked
up the work piece in her other hand and whittled, by applying force to the
knife which transferred the force to the workpiece, it to the desired shape.
She put down the work piece, closed the knife against the holding force of
the knife and the knife held the blade closed, and she put it back into her
pocket.

To model the context we must first identify the objects involved. The objects in the
environment with which the knife interconnects are the person, the pocket, and the
workpiece. Figure 2-17., A Context of Multi-Tool Pocket Knife shows these intercon-
nections. If not needed for clarity, the line between person and pocket and the line
between person and work piece can be eliminated because they do not show intercon-
nections directly to pocket knife and are not essential for understanding its context.

Pocket Workpiecestores operates on

Person holds

ap
pl

ie
s

fo
rc

e
to

 places knife in,
 removes knife from

gr
as

ps
op

en
s

to
ol

cl
os

es
 to

ol

Multi-Tool
Pocket Knife

Figure 2-17. A Context of Multi-Tool Pocket Knife
62

Basics of Structure
2.7.4 Example - Multi-Tool Assembly Interconnection
In addition to relating to things in their context, things are also built out of other
things. Certain of the parts interconnect or are associated to assemble the thing. Inter-
connection shows how to assemble an object from its parts. For each aggregation, or
assembly point, in the aggregation for the multi-tool pocket knife, there is an assem-
bly of parts, an interconnection. Figure 2-18., Assembly Interconnections for Metal
Knife Case shows the assembly interconnections for the Metal Knife Case.

The Channel Plate, Spring, and Metal Side Plate are secured by the Assembly Rivet.
The Channel Plate is adjacent to two springs. Dimensioned mechanical drawings con-
vey more information about physical objects than do the object diagrams, but that is
the work of mechanical engineers doing detail design. The object diagrams for struc-
ture capture the parts, the choices among parts, and how the parts are to assemble,
without designing the parts.

2.8 Roles

We have described the abstractions needed to describe structure and a notation for
these abstractions. These abstractions are all static in nature. That is they capture the
structure of the system at one instant and in one context. Real systems are more com-
plex than this. A single object may have several roles in the system depending on
when in the life cycle it is viewed and what problem is being considered by what
group of people. Possible roles a thing (object) may have in systems engineering
include:

• Subject System, the thing being defined,

• External System, something in the context of the thing being defined,

Metal Side
Plate

Assembly

SpringChannel
Plate adjacent toadjacent to

 2

secure

secure secure

Rivet

Figure 2-18. Assembly Interconnections for Metal Knife Case
63

Basics of Structure
• Component, a part of the thing being defined,

• Input/Output, something consumed or produced by the thing being defined.

In our pocket knife example the knife as we have studied it is the subject system. From
the standpoint of a carver, however, it is just one of many tools in the carver’s environ-
ment. Consider all the roles an automobile engine might have:

• The Subject System by the engine design team

• An External System by the transmission design team

• A Component by the automobile design team or by a buyer considering engine
options

• An Output by the Engine Manufacturing Facility

• An Input by the Automobile Assembly Plant

• An Input and Output by the Just-in Time Logistics Group that delivers parts to
the Automobile Assembly Plant

It is important to know what roles an object participates in when viewing it to under-
stand its place in the total structure. It is also important to maintain consistency in the
object’s design between its use in different roles. The structure modeling capability
described captures these associations rigorously enabling all designers to develop a
shared understanding. Roles and their effect on structure will be discussed in detail in
later chapters.

2.9 Allocation of Functions to Objects

Now that some structural analysis has been performed, the knife is understood in
terms of several structure models:

1. A classification tree which shows the parts that can be selected

2. A parts list or aggregation which shows the parts selected and the parts needed
for assemblies of parts

3. An interconnection diagram that defines the context
64

Basics of Structure
4. Interconnection diagrams that show the interfaces in the assemblies and subas-
semblies

These structure models help with the assignment of functions to the objects in the
models, although behavior analysis, described in Chapter 3. is needed to fully
develop alternatives in assigning functions to the objects. From the context it is seen
that functions like whittle or carve or fasten with screw are appropriate to assign to
the Person who will manipulate the work piece and the pocket knife and select an
appropriate tool. Functions like turn phillips head screw, or cut open can are appropri-
ate to assign to specific tools. When this understanding is augmented with executable
models of the behaviors involved, the problem and proposed solution are described
rigorously.

2.10 Summary

A semantics for static structure has been defined
The semantic abstractions defining objects are:

• Object Classes having:

• Name
• Attributes
• Functions

• Object Instances inheriting:

• Attributes and having Attribute Values
• Functions

The semantic abstractions defining associations among objects are:
• Parts Tree (Aggregation)

• Interconnection applied to:

• Context
• Assembly

• Classification

• Cardinallity

These abstractions have been demonstrated with the modeling of a real product.
The models can be detailed and apply narrowly to a specific product.

The models can be generalized to model a product family and the reuse options

The models of structure are computer executable

A notation, OMT, has been described for this modeling; any other notation may
be used that covers these abstractions.
65

Basics of Structure
The notation can be selected or tailored to organization culture and preferences

2.11 Exercises

1. Create a Class Box for a person using a pocket knife. Include important attributes
and functions.

2. Look at Figure 2-6., Initial Class Definition for Pocket Knife on page 45, and exam-
ine the attributes. Do any of the attributes belong more appropriately with the parts
of the knife? Are there important attributes missing? Consider your fingernails in
opening such a knife. Consider limits in turning screws or prying open paint cans
with a screwdriver tool. Redraw the Class Box for Multi-tool Pocket Knife and cre-
ate one for Tool. Identify the appropriate attributes and initial functions for both
classes.

3. Create Assembly diagrams for Multi-Tool Pocket Knife and for Metal Knife
Assembly

4. The Multi-tool Pocket Knife stores tools in channels, which are not parts, but are
regions defined by a set of parts. Define channels using OMT models.

5. More than one type of tool is available to use in making pocket knives. How does
the type of tool effect the model of channels?

6. Observe your surroundings.

a. Create class definitions for six things in your environment.

b. Create assembly or interconnection diagrams for these six things.

c. Chose two of the classes and show how they are related using classification.

2.12 References

Booch, G. 1983. Software Engineering with Ada., Menlo Park, Ca.: Benjamin/Cum-
mings

Buhr, R.J.A. 1984. System Design with Ada, Englewood Cliffs, N.J.,: Prentice-Hall
Liskov, Barbara, et. al. 1981. CLU Reference Manual, Lecture Notes in Computer Sci-

ence, ed. G. Goos and J. Hartmanis: Springer-Verlag
The New Encyclopedia Britannica 1980, 15th Edition
Rumbaugh, James; Michael Blaha, William J. Premerlani, Frederick Eddy and Will-

iam Lorensen, 1991. Object-Oriented Modeling and Design, Englewood Cliffs,
N.J.: Prentice Hall

Young, D.A. 1990. The X Window System: Programming and Applications with Xt.
Englewood Cliffs, NJ. Prentice-Hall.
66

Basics of Behavior
Basics of Behavior
3.1 Introduction to Behavior

In the previous chapter we described the elements of structure and a notation for
those elements. In this chapter we explore the same issues for behavior. Behavior is
what a thing or object does, or what one wants a thing to do. Behavior for a system
describes what the system is to do, independent of how the system will do it. A full
description or model of behavior contains sufficient information that a person or a
computer may execute the model and observe the desired behavior. When behavior is
expressed with such a description it is referred to as an executable behavior. Such
descriptions have been developed to enable engineers to develop time lines for the
performance of systems, and to execute time-dependent simulations and probabilistic
calculations. When behavior is captured in executable form, it may be checked for
correctness. In this way conditions such as starvation, where one part of a system
never receives the inputs it needs, or deadlock, where separate parts of the system are
stuck waiting for each other, can be uncovered and corrected during system design.

Many methods of describing behavior have been developed over the years. The
methods vary in formality and in the degree of detail which they capture.

This chapter looks at details which must be captured in order to have an execut-
able behavior, and compares this information to some popular methods for describing
behavior or partial views of behavior using text alone or graphic notations.

3.1.1 Elements of Behavior
In order to create a complete description of a behavior a number of modeling ele-
ments are required. The necessary set of semantic elements includes:

• functions, which accept inputs and transform them to outputs

• inputs and outputs, of various types, and
67

Basics of Behavior
• control operators, which define the ordering of functions

These modeling elements must be defined using a precise definition language and
expressing these elements with a notation which is unambiguous. The particular set of
symbols and notation used is unimportant so long as they are understood and consis-
tent. Any notation which has all of these characteristic elements can be made execut-
able.

Despite the precision and range of expression afforded by use of a behavior nota-
tion, text cannot be eliminated. Except at the lowest level a text description is required
to accompany the behavior model. The text provides a description that can quickly
give consumers of the model an intuitive feel for the model. The details can then be
quickly found by looking at the model. As with all other parts of system design, sev-
eral conventions have been developed for these text descriptions. The most common
are:

• definitions for a data dictionary,

• imperative statements, often containing the word “shall”, which constitute a
list of what the system, object, or thing is to do. These are particularly useful
for contract and acquisition purposes. This list is termed the specification by
the organization producing it, which becomes the customer. In current practice,
it often forms the basis for the contract to build a system, requiring a supplier to
produce something according to the list. From the suppliers viewpoint this list
is called the system requirements.

• narrative statements which can be joined together to provide a text description
of what the object is intended to do. A narrative of this type is called an opera-
tions concept. It is useful for communication with users, owners, operators,
management, marketing and other disciplines which do not need or wish to deal
with all of the engineering detail.

It is important to note that these text descriptions are not sufficient to fully describe a
system, just as the model does not stand on its own. Only by blending the two sets of
information do they become a complete picture.

3.1.2 Behavior in the System Context
The static description of context establishes what elements in the environment interact
with the system. The static model of context defines the system by establishing what
external systems interact with the subject system and by listing what excitations, func-
tions, the external systems perform to which the subject system must respond. Figure
3-1., Structural Context of Multi-Tool Pocket Knife, shows the final context model for
the pocket knife example as developed in the previous chapter. Throughout the devel-
opment of the structure model definition of the functions associated with the classes
68

Basics of Behavior
was left vague. The interconnections in the context diagram suggest some of the nec-
essary functions. In order to go further with function definition, however, we need to
take a step back for the structural model and develop a model of the desired behavior.
Once this is defined we can then partition the behavior and map it onto the structural
elements.

3.1.3 This Chapter
The static model is lacking two major elements required to rigorously describe
behavior:

• The ordering of the functions

• The inputs and outputs to each function

In this chapter we will explain these concepts in detail and introduce appropriate
graphical modeling notation for modeling them. We will continue illustrating the
modeling concepts and notation with out multi-tool pocket knife.

After these descriptions and illustrations, we will use OMT to precisely define
an information model for behavior. The chapter concludes with a discussion of how
these models and concepts relate to requirements and specifications.

3.2 Modeling of Behavior

The first questions to be considered in modeling behavior are:
• What happens?,

• In what order?, and

Pocket Workpiecestores operates on

Person holds

ap
pl

ie
s

fo
rc

e
to

 places knife in,
 removes knife from

gr
as

ps
op

en
s

to
ol

cl
os

es
 to

ol
Figure 3-1. Structural Context of Multi-Tool Pocket Knife

Multi-Tool
Pocket Knife
69

Basics of Behavior
• What inputs and outputs are involved?

Modeling of functions is the way we address the first of these basic questions.
The second question is addressed by the ordering of a collection of functions in a sys-
tem. For ordering, a number of concepts need to be represented:

• sequencing, which indicates which functions must precede or succeed others,

• concurrency, describing functions which can occur simultaneously,

• selection, capturing choices which must be made between functions, and

• iteration, indicating which functions are repeated as a block.

For the third question inputs and outputs to the functions are modeled.
For large complex systems it is always necessary to break the system structure

and behavior into parts, using aggregation, in order to manage the complexity. The
behavior view can be simplified in another way, by using partial views of the behavior
which together comprise the behavior. Some examples of partial views are:

• Functional Flow Block Diagrams, for functions and ordering of functions

• Data Flow Diagrams, DFD’s, (Martin and McClure 1985), (Yourdon 1989)
and N-squared Charts, for functions and input/output

3.3 Functional Flow Block Diagrams

Functional Flow Block Diagrams, FFBDs, were developed in the late 1950’s by TRW
Corp. to help describe ballistic missile behaviors which were found to be too complex
to be adequately described in text. Further work at TRW enhanced the descriptions to
make them executable, (Alford 1977, 1992). We will introduce first the basic FFBD
and then discuss the necessary extensions to make the diagrams executable. FFBDs
are discussed in detail in a number of other reference works (Blanchard and Fabrycky
1990), (MIL-STD-499 1968), (Kockler 1990). The primary views of behavior mod-
eled with FFBDs are functions, their ordering, and their composition.

3.3.1 Functions
In FFBDs functions are represented as blocks or rectangles labeled with the function
name. Often a number is assigned to the function and displayed as a banner across the
top of the block. This number tracks the function location within the hierarchy. (We
will discuss hierarchy later.) Figure 3-2., FFBD Notation for Functions shows this
notation.
70

Basics of Behavior
3.3.2 Ordering
Ordering of functions is shown by lines connecting the blocks.

Sequence
A simple sequence is shown by an arrow coming out of the right side of the predeces-
sor and into the left side of the successor. Time in FFBDs flows from left to right. Of
course, limitations such as page size sometimes cause the diagram to wrap back to the
left hand side of the page. this is shown in Figure 3-3., FFBD Depiction of Sequence.

Concurrency
Concurrency is represented by an AND relationship. The AND shows that all of the
branches coming from it can happen at the same time. This is not to say that all of the
branches have to be performed in parallel only that they can. In the diagram the AND
is shown as a circle with the word “AND” written inside. All of the concurrent
branches emanate from the circle. The branches for the concurrency join back
together with the main sequence arrows when the concurrency is completed. Option-
ally, the concurrency can be completed with a second circle with “AND” inscribed
and the branches merging into the circle. Choice of which form to use is left to the
designer or dictated by the use of a particular support tool. Figure 3-4., Representa-
tions of Concurrency in FFBDs shows both forms.

Function_Name

4.1.3

Function_Name

Figure 3-2. FFBD Notation for Functions

Predecessor Successor

Sequence Indicator

Figure 3-3. FFBD Depiction of Sequence
71

Basics of Behavior
Selection
Selection is represented by an OR relationship. Selection represents two or more alter-
native paths through the functions which can be taken. The FFBD diagram representa-
tion is similar to concurrency with the word AND replace by the word OR. A third
shorthand form is also used for selection. When a binary choice is made, the selection
can be shown by two arrows leaving a function block, each labeled with a selection
criteria. Figure 3-5., Representations of Selection in FFBDs shows the various forms.

AND

Function A

Function C

Function B

Figure 3-4. Representations of Concurrency in FFBDs

AND

Function A

Function C

Function B AND
72

Basics of Behavior
Iteration
 Iteration is the last of the major ordering operations that is used to model behavior. In
FFBDs iteration is depicted similarly to the third form used for selection. Iteration is
shown as an arrow coming out of a decision block which loops backward over a set of
functions. The backward arrow is labeled with a completion criteria. This is shown in
Figure 3-6., Iteration in FFBDs.

OR

Function A

Function C

Function B

OR

Function A

Function C

Function B OR

Function A

Function BChoice Function
OK

Not OK

Figure 3-5. Representations of Selection in FFBDs
73

Basics of Behavior

3.3.3 Example, Pocket Knife
The FFBD notation introduced so far, function, sequence, selection, concurrency and
iteration are sufficient to begin modeling the behavior of the pocket knife. We begin
the modeling by referring to the same usage scenario used in modeling the static con-
text.

She reached into her right pocket and took out the pocket knife. She opened
the large blade with her thumbnail against the closing force of the knife and
the knife held the blade open. She grasped the knife firmly. She picked up the
work piece in her other hand and whittled it to the desired shape by applying
force to the knife which transferred the force to the workpiece. She put down
the work piece, closed the knife against the holding force of the knife and the
knife held the blade closed. She put it back into her pocket.

In considering the static context we focused primarily on the objects that are
involved in the scenario. From the behavior standpoint we focus on the actions that are
performed. After both models are developed we will map from the behavior onto the
structure. Figure 3-7., FFBD for Person Using Pocket Knife, shows the FFBD model
of the actions performed in this scenario.

Figure 3-6. Iteration in FFBDs

Function A Function B Choice Function

Not Done
74

Basics of Behavior
This model shows a view of the intrinsic behavior of the Person, the behavior as
limited by physical reality. The Knife is removed from the Pocket before it is opened.
The tool is opened before the Work is held because it takes two hands to open the
Knife. The Work must be held at the same time as it is operated on. The Work is
released before the tool is closed in order to have a hand free to close it. The tool is
closed before placing it in the Pocket. The iterative loop allows for the possibility that
a different tool or different work pieces will be operated on in the same session.

3.3.4 Hierarchy
If we were to attempt to model every function with all of the associated details in one
diagram, it would quickly become too large and unwieldy. To overcome this limita-
tion hierarchy is used. Hierarchy of functional design provides convenient encapsula-
tions of detail. At the higher levels the function blocks represent complex functions,
as the design proceeds and the lower levels are reached, the functions are increasingly
atomic. The numbers which label the function blocks track the level and placement of
blocks within the hierarchy. At each level a new level of numbering is used. Each
block within the hierarchy then has a unique number which specifies its location. Fig-
ure 3-8., Hierarchy representation in FFBDs shows the FFBD representation of hier-
archy.

continue till finished with knife

Hold
Work

Operate
Tool

Remove Replace
Knife in
Pocket

And
pocket

Knife from
Open
Tool And

Close
Tool

Release
Work

Figure 3-7. FFBD for Person Using Pocket Knife
75

Basics of Behavior
Example, Behavior Hierarchy
In one of the functions in Figure 3-7., FFBD for Person Using Pocket Knife, Open
Tool there is a selection among alternative tools to open. Rather than put that detail
into the same FFBD, we will use hierarchy to show that information in a separate dia-
gram. A Lower Level FFBD is drawn for Open Tool as shown in Figure 3-9., Lower
Level FFBD Diagram. The FFBD uses an “Or” construction to show selection.

The original FFBD model, developed by examining the scenario is not sufficient
to capture all of the required behavior. The scenario examined the knife in its context.
To make a complete model we need to expand to include the behavior of the knife as

Internal Detail 1 Internal Detail 2

1.1 1.2

Higher Function

1

Figure 3-8. Hierarchy representation in FFBDs

Open
Large Knife

Open
Small Knife

Open
Can Opener

Open
Awl

Open

Open
Screwdriver/

Corkscrew

OR OR

Bottle Opener

Open
Tool

Figure 3-9. Lower Level FFBD Diagram
76

Basics of Behavior
well Figure 3-10., FFBD Diagram for Pocket Knife, shows the simple cyclic ordering
of the functions. The Knife holds a Tool closed, then holds a Tool open, and can then
hold the Tool closed.

3.3.5 Input and Output
The ordering of functions requires the capture of their sequence, their concurrency,
their selection, and their iteration. The Functional Flow Block Diagram is one graphic
notation that records this information. This information is only a partial view of
behavior because none of the functions’ inputs and outputs are described. Inputs/out-
puts must be included in the model because they are the entities transformed by the
functions, because they trigger some functions, and because they provide the infor-
mation about the path to take at some of the selection points among functions. Under-
standing these interactions is essential to understanding the full behavior. In addition,
the input and output models are required to execute the model and verify their correct
operation.

Behavior Diagrams
When Input/output information is added to an FFBD or equivalent diagram, one
obtains a behavior diagram. Behavior diagrams of this general type were developed
by Alford (Alford 1977,1992). The Alford type diagrams are rotated 90 degrees so
that the time flow is vertical and down instead of horizontal, left to right. The Alford
type diagrams are designed to distinguish among several kinds of concurrency and
incorporate symbols for each type. In this form they are supported by the RDD-100
tool, (Ascent Logic Corp.). In a horizontal format behavior is supported by the Core
tool, (Vitech Corp). There are differences in the notations supported by different
tools, but the capture of functions, the ordering of functions, and capture of input/out-
puts is common to the different implementations of executable behavior. A related
representation is that of Statecharts, (Harel 1987), which will be discussed later. This
is the usual situation: a plethora of competing notations and tools to capture the same
abstractions without tool support to transform among the notations and tools.

Hold
Tool
Open

Hold
Tool
Closed

continue till finished with knife

Figure 3-10. FFBD Diagram for Pocket Knife

Transfer
Force
77

Basics of Behavior
For use within this book, the Input/outputs are depicted as ovals, and the dashed
arrows show the direction of flow of the Inputs/outputs. Such a diagram is shown in
Figure 3-11., Behavior Diagram for Pocket Knife.

In this simple example the inputs come from context and outputs return to the
context. The behavior of the person in the context results in a more complex behavior
diagram as shown in Figure 3-12., Behavior Diagram for Person Using Pocket Knife

Hold
Tool
Open

Hold
Tool
Closed

Open
Force Open

Tool

Close
Force

Closed
Tool

continue till finished with knife

Transfer
Force

Input
Force Output

Force

Figure 3-11. Behavior Diagram for Pocket Knife
78

Basics of Behavior
.

It provides an executable description of what the person does. The process
begins with a pocket knife in a pocket and a piece of work. It ends with the pocket
knife back in the pocket and a modified piece of work. The excitations to which our
subject system pocket knife must respond are the input open force from the function
open tool, The input force from the function operate tool, and the input close force
from the function close tool. The response from the pocket knife to open force is an
open pocket knife with the selected tool held open. The response from the pocket
knife to the force is to transfer the force to the workpiece in the form of cutting or
screwing or however the selected tool applies its force. The response of the pocket
knife to close force is a closed pocket knife with the tool held closed. Taken together,
the two behavior diagrams can be put together to form a single behavior of the pocket
knife in its context. Figure 3-13., Behavior Diagram for Pocket Knife in its context
shows this single diagram.

Pocket
Knife in
Pocket

Pocket
Knife in
Hand

Work Work in
Hand

Hold
Work

Operate
Tool

Remove Replace
Knife in
Pocket

And
pocket

Knife from
Open
Tool And

Close
Force

Open
Force

Force

Closed
Pocket
Knife

Modified
Pocket
Knife in
Pocket

Close
Tool

Release
Work

Workcontinue till finished with knife

Open
Tool

Figure 3-12. Behavior Diagram for Person Using Pocket Knife
79

Basics of Behavior
Pocket
Knife in
Pocket

Pocket
Knife in
Hand

Work Work in
Hand

Hold
Work

Operate
Tool

Remove Replace
Knife in
Pocket

And
pocket

Knife from
Open
Tool And

Close
Force

Open
Force

Closed
 Tool

Modified

Pocket
Knife in
Pocket

Close
Tool

Release
Work

Work

Hold
Tool
Open

Hold
Tool
Closed

continue till finished with knife

continue till finished with knife

And And

Open
Tool

Input
Force

Output
Force

Transfer
Force

Figure 3-13. Behavior Diagram for Pocket Knife in its context
80

Basics of Behavior
3.4 Data Flow Diagrams

As noted earlier Functional Flow Block Diagrams are a useful partial view of behav-
ior which suppresses all input/output information. The behavior diagrams just dis-
cussed added in the input/output information. If we subtract the sequencing
information from the behavior diagrams what is left are the elements of a Data Flow
Diagram. The Data Flow Diagram and N-squared chart are useful partial views of
behavior which are captured in two different notational styles and which suppresses
the information of ordering of functions.

.

Figure 3-14., Input-Output Diagram for Person shows the behavior diagram
with the sequencing information suppressed. The notation differs from DFD notation.
In DFD notation the functions are in ovals not in rectangles. The inputs/outputs are
annotations on arrows that go from one function to another Data Store are shown as
The name of the data store with a line above and below the name. Figure 3-15., Data
Flow Elements for Pocket Knife Context shows the input output diagram of Figure 3-
14. recast as a data flow diagram. The diagram consists of four disconnected elements
sine the diagram does not include the pocket knife itself.

Pocket
Knife in
Pocket

Pocket
Knife in
Hand

Work Work in
Hand

Hold
Work

Operate
Tool

Remove Replace
Knife in
Pocketpocket

Knife from
Open
Tool

Close
Force

Open
Force

Force

Closed
Pocket
Knife

Modified
Pocket
Knife in
Pocket

Close
Tool

Release
Work

Work

Open
Tool

Figure 3-14. Input-Output Diagram for Person
81

Basics of Behavior
3.5 Representation of Behavior as State

Another view of behavior which has gained usage in recent years is state modeling.
This provides a powerful and convenient method to capture the pattern of activity for
a given structure. A number of diagraming techniques are used for modeling behavior
with state representation. Chief among these are:

• State Charts, and

• State transition diagrams.

These diagrams are very useful for generating implementations at leaf level where
complex trade-off is not needed. When trade-off is yet to be performed, however, state
representations can obscure the possibilities for trade-off or become unmanageably
large.

Two different formalisms are used for representing state. In the first, known as
Mealy machine the functions, or activities, are modeled as taking place during the
transitions between states. (Mealy 1955) In the second the functions are modeled as
taking place while the machine is in the state. These are known as Moore machines.

Figure 3-15. Data Flow Elements for Pocket Knife Context

Pocket
Knife in
Pocket

Pocket
Knife in
Hand

Work

Work in
HandHold

Work

Operate
 Tool

Remove

Replace
Knife in
Pocket

pocket
Knife from Open

Tool

Close
Force

Open
Force

Force

Closed
Pocket
Knife

Modified

Pocket
Knife in
Pocket

Close
Tool

Release
Work Work

Open
Tool
82

Basics of Behavior
(Moore 1964). The two representation are interchangeable in terms of their ability to
model a problem (Hopcroft and Ullman 1979). It is important, however, to under-
stand which approach is being used when interpreting a state diagram.

For any given FFBD a state diagram can be constructed which models the same
set of functions. To see that this is the case consider the transformations necessary to
get from an FFBD to a state model. They are the same transformation used to change
a nondeterministic finite automata into a deterministic automata. Assuming that the
state representation will be a Moore machine, the transformations are as follows:

• For each function in the FFBD create a state. Assign the function as the activ-
ity to be performed while in the state.

• For each sequence block in the FFBD construct a transition between the states
representing the functions on either end of the sequence. These transition are
labeled as default, or epsilon, transitions.

• For each selection in the FFBD create a transition to each of the selection
choices. Label each transition with the value which corresponds to the selec-
tion criteria.

• For each concurrency in the FFBD create new states for each of the possible
combinations of concurrency. That is create a new state for each permutation
of functions that may be activated concurrently. Replicate all transitions from
the original states to each of the new sates. Add transitions to each of the new
states from the state(s) representing the function(s) which proceeded the con-
currency in the FFDB.

This process, of course, can lead to a very large state model if concurrency was used
in the FFBD model. Statecharts, (Harel 1987),were developed to overcome this expo-
nential expansion problem.

Statecharts
 Statecharts have the advantages of being hierarchical, of having a well defined rela-
tionship with functions, and of defining “and” states to represent concurrency. The
“and” states that are used with statecharts are really composite states which group
together several substates into a single entity.

Statecharts represent states as shown in Figure 3-16., States in Statecharts.
83

Basics of Behavior
Statecharts in OMT use the Moore formalism which implies that the functions
and activities occur within the state. In the statechart diagram the states are shown as
rounded contours with transitions appearing as arrows. Within the contour for a state
the actions of the state are written. Each state can have an entry action, a do: action,
which is the main function of the state, a list of actions to perform when triggered by
events, and an exit action. The various actions are all called activities. Functions in
FFBDs correspond to Activities in Statecharts. Sequence in FFBDs results in sequen-
tial sates in statecharts. A selection in FFBDs corresponds to transition to states with
corresponding activities in statecharts. Concurrency in FFBDs, “and”, corresponds to
“and” states in statecharts.

Figure 3-17., FFBD for Pocket Knife recast as a Statechart gives an example of
a statechart diagram.

State Name

entry / entry-action
do: Activity - A
event-1 / action 1
event-2 / action 2
...
exit / exit-action

Figure 3-16. States in State-

not finished with knife

do: Hold
 Work

do: Replace Knife

from Pocket
do: Remove Knife

do: Close
 Tool

do: Release
 Work

do: Open Tool

in Pocket

Use Tool

do: Operate
 Tool finished

Figure 3-17. FFBD for Pocket Knife recast as a Statechart
84

Basics of Behavior
Statecharts handle hierarchy in a similar way to FFBDs. Each of the state bub-
bles can be decomposed into a finer level of granularity. This is the same mechanism
FFBDs employ. In contrast to FFBDs, however, the transitions in statecharts can also
be refined in statecharts at lower levels.

From a modeling standpoint we have shown that statecharts work fairly simi-
larly to FFBDs for capture of behavior. A problem arises, however, when the time for
trade-off analysis and mapping to structure occurs. The statechart approach assumes
that there will be one piece of structure which is implementing, and therefore, respon-
sible for maintaining the state information. This tying of behavior model to a prede-
termined system structure places strong limitations on trade-off.

3.6 Pocket Knife Example, Summary

Together, Figure 3-1., Structural Context of Multi-Tool Pocket Knife and Figure 3-7.,
FFBD for Person Using Pocket Knife define the static associations of the pocketknife
and the dynamic interactions. They define the interconnections of the pocket knife
with its environment. They define what that environment does to which the pocket
knife must respond, the excitations, and they define the response of the pocket knife.
They are computer executable. In the aggregated form they can be used to make sim-
ulated estimates of system performance.

Although the static and dynamic models of context fully define the system
(pocket knife) environment, they contain no information about the internal structure
of pocket knife. They capture what the subject system must do in response to the
external systems, not how the subject system is to be built. A final step is necessary to
go from the design as it stands to a complete system definition. The behavior must be
mapped onto the static structure. This is discussed in detail later in this book.

3.7 Information Model for Behavior

Behavior will now be described with a more formal approach using an information
model. We will use the OMT notation to describe the structure of the information
needed to describe behavior. Figure 3-18., Information Model for Behavior is an
information model which defines Behavior. The associations it presents are each
described.
85

Basics of Behavior
3.7.1 Behavior
The key element of this information model is the behavior object. By understanding it
and its associations readers will come to understand what is meant by behavior.

As shown by the aggregation, Behavior is built from Input/Output items, Func-
tions, and Control Operations. The cardinality shows that the behavior is not made of
just one of each item but is a multiplicity of each, as many as are required to define the
behavior. Furthermore, there is a relationship between Function and Input/output and
between Function and Control Operations which describes how many of each exist
within the behavior.

Behavior

Input/Output
Max amount
Min amount
Current amount
Tolerance

Function
Duration
Generation
 rate
Consumption
 rate

Consume
 inputs
Generate
 outputs

ordered
generates &
consumes

Control
operation

Selection Sequence Concurrency

Parallel
function

State

Iteration
to a limit

2, all1+

Non-
triggering
I/O

Triggering
I/O

trigger

provide criteria forNon-
Condition
I/O

Condition
I/O

effect

condition

by

Figure 3-18. Information Model for Behavior
86

Basics of Behavior
3.7.2 Input/Output
Input/Output items are passive objects. For the behavior model view we need to cap-
ture the attributes that characterize the Input/Output. These includes a range of size of
the item and tolerance information. Each Input/output is associated with at least one
Function. Most Input/output are associated with at least two functions: one which
generates it and the other which consumes it. An Input/output can be broadcast to all
Functions.

Each Function is associated with two or more Input/output items.

There are two important independent classifications that define subclasses of
input/output relating to Behavior. The subclass classified by effect designates non-
triggering and triggering items. The subclass classified by condition designates input/
output items that do not define criteria for decision and those that do define criteria
for decision.

Input/output Triggering Items turn functions on and off. There can be more than
one triggering item for a function, and more than a single function can be triggered by
a single triggering item.

Condition items contribute to the order of functions by providing the criteria for
selecting among alternative paths in a behavior.

3.7.3 Function
Function is the other major constituent of Behavior. For the behavior model we need
to capture information about the Function relevant to providing a simulation of the
Behavior. This information includes

• Duration, how long this Function takes to execute as a time or probability esti-
mate,

• Generation Rate, the speed at which it generates outputs, and

• Consumption Rate, the speed at which it consumes inputs.

In addition functions have two operations: consume inputs and produce outputs.

Function is interconnected with the Control Operation class marked with an
ordered by. From this we learn that a Function can be ordered by many Control Oper-
ations and that a Control Operation can order many Functions.
87

Basics of Behavior
3.7.4 Control Operations
Control Operations determine the order in which multiple functions are activated.
They are any one of four types. The simplest is sequence, as the name implies, this
says that one function comes after another function. Selection is the basic conditional
operation. Based on some input/output item to which it is associated, the selection
control operation determines which of several possible functions to perform next. Iter-
ation to a limit is a special case of sequence and selection. It is such a common case,
however, that it is elevated to a control operation of its own. In essence it is the loop-
ing operator. Concurrency describes the reality that more than one function is active at
the same time.

The expression of concurrency is critically important. Early in the analysis of a
system there are often many functions which are known to be important and are
known to be concurrent. If the concurrency of the functions is captured in the behavior
model, independent of structure, then the concurrent functions can be allocated to
objects (resources) in different ways to provide major design alternatives.

As seen from the information model, concurrency can be represented two ways,
as parallel function and as state. The allocation of the concurrent functions to objects
defines the state structure for those objects. A different allocation will result in a dif-
ferent state picture for the objects. For this reason it is useful to capture behavior with
the functional representations when developing requirements and to add state views as
the allocation to objects is established.

The set of control operations shown in here is a minimal set. More complex con-
trol operations can be constructed from this simple, minimal set.

3.7.5 In Summary
In total, the information model defines a behavior as a collection of inputs and outputs
together with some functions. These function are ordered by a set of standard control
operations. The functions consume the inputs and produce the outputs. The inputs pro-
vide the key values for triggering the functions and controlling the selection decision
making. Behavior and these elements are made hierarchical by the structure associa-
tions.

3.8 Information Model for Input/Output

There are several additional classifications of input/output which are important to the
engineering of systems and were not included in the discussion of behavior. These
additional classifications deal with issues such as the physical nature of the input/out-
put and its longevity whether it is consumed promptly or is stored. These additional
classifications are important in some applications and are unimportant in others. They
are shown in Figure 3-19., Information Model for Input/Output.
88

Basics of Behavior
Classification by condition and by effect have already been discussed. Classifi-
cation by physical nature is important to the general case of systems. The input/output
may be a material thing, it may be energy in one of its many forms, or it may be infor-
mation. Software engineering and software engineering methodologies often assume
that all input/output is of the class information. This viewpoint needs to be general-
ized to include material objects and energy when these techniques are applied to sys-
tems.

Input/output

Max amount
Min amount
Current amount
Tolerance

Non-Triggering I/O Triggering I/O

Triggering Triggering

Transitory I/O

StockReplicaLocal I/O Global I/O

Stationary I/O

access

longevity

Material I/O Information I/O

Energy I/O

physical

nature

storage

content

effect

Non-Condition I/O

condition

Condition I/O

Figure 3-19. Information Model for Input/Output

with
Content

without
Content
89

Basics of Behavior
Input/output of the class Triggering I/O has two subclasses depending upon
whether the I/O has content. The content may be information, a physical thing, or
energy. Very often in the physical world the triggering and the physical content are
intimately associated. This is the case when a person or animal steps into a bear trap
with a foot or when smoke sets off a smoke alarm. Methodologies or notations that
insist that triggering be disconnected from content in their basic abstractions need to
allow for association of content with triggering to represent systems in which that
association is a reality.

An equally important concept is that of how long an input/output persists, its
longevity. Is it stationary and persists in the system for some time before being con-
sumed, or is it transitory and consumed as rapidly as it is produced. Data in software
may belong in either of these subclasses. In the worlds of chemistry and biology some
substances are produced as intermediate products and have only a transitory existence.
Others may remain for long periods of time even when that is undesirable as in the
case of PCB contamination. It is important in many applications to deal with the sta-
tionary or transitory aspects of inputs/outputs because of the practical implications.
The assignment of inputs/outputs to these two subclasses is very dependent upon the
application and on the critical issues and time scale important to the application.

For input/output that is persistent, there are two further important subclasses.
One of these is based on the concept of access. The access to the persistent things may
be available to all, Global I/O, or is it may be restricted to a particular group, Local I/
O.

A final classification is based on the manner in which Input/output is stored,
storage. Some things are themselves stored physically as stock. They are placed in a
warehouse of some kind and one can only take out as many or as much as was put in
because of the physical laws of conservation of mass and energy. Examples are TV
sets in a warehouse, or the potential energy in the water behind Hoover dam.

In many modern instances the physical item itself is not stored at all. What is
stored is a replica of the object in association with a machine which can use the replica
to rapidly make as many of the objects as desired. For many applications people speak
of this situation as though the actual object were stored, and they abstract away all of
the details of creating the replica, storing it, and creating copies of the original object.
For their practical purposes they have no need for this detail so they treat the situation
as though the object were stored and consider the time to create the object as an access
time. This is the way data storage is considered in software engineering. It is not data
that is stored on a magnetic disk, but tiny regions of magnetization. This detail can be
neglected by many, but not by those who design and manufacture the magnetic storage
devices. There are many examples in the physical world such as negatives of photo-
graphs or dies for plastic injection molding machines. The unique characteristic of this
subclass is that one stores an object once, really the replica, and can get as many cop-
ies of it as desired.
90

Basics of Behavior
3.9 Relationship of Behavior and Structure

Behavior and structure, as we have discussed, can be viewed in many ways by depict-
ing part or all of the information. The two must be modeled separately for the sake of
finding alternative solutions and performing trade off analysis. This does not say,
however, that there is no relationship between the them. Obviously, there must be.
This relationship is modeled in Figure 3-20., Behavior and Structure Information
Model.

3.9.1 Structure Models
Classification, Interconnection and Aggregation are the three major modeling
abstractions.The can be used in diagrams separately or in combination. Consequently,
the classification is shown as inclusive (the dark triangle) in Figure 3-20., Behavior
and Structure Information Model.
91

Basics of Behavior
Because the behavior is mapped to structure, the behavior and structure models
are not completely independent. The central part of the figure shows a mapping of
Behavior onto the Objects which will provide the Behavior. This mapping encapsu-
lates the behavior in the objects. The list of functions or methods in the class definition

Map of
Behavior

to
Objects

Classification
(Class Tree)

Aggregation
Assembly

or

Interconnection

Object Model
(How)

Behavior
Model
(What)

Parallel Function,
I/O, Control

State, I/O, Functions
Events, Control

Views of Behavior

Projections
 of

Behavior

Projections
 of

Behavior

Function,
Control

Function,
I/O

State,
Control,
Events

Function,
I/O

Defines Interconnection, Interfaces

Encapsulates Functions

Represented By

Context Diagram

(Part Tree)

Views of Structure

Figure 3-20. Behavior and Structure Information Model
92

Basics of Behavior
box representing objects must be consistent with the mapping of Behavior. Because
the Behavior includes all Inputs/outputs, the mapping of Behavior to Objects estab-
lishes which active objects inter communicate via Inputs/outputs. The mapping estab-
lishes the interconnections between active objects that support input/output. The
structural interconnection association must be consistent with the results of the map-
ping or allocating behavior to objects.

It is very important to realize that one cannot predict the emergent behavior of a
system from the properties of the parts alone. How the parts interact is critical. In the
simple case of the pocket knife, the hold tool open behavior cannot be realized until
the knife case, the tools, and the spring are riveted together. It is the dynamic interac-
tion of the parts which allow a tool to be opened or closed easily, yet held in place
firmly. This is the reason for allocation of behavior onto objects such that the interac-
tion of the objects will produce that desired behavior.

3.9.2 Behavior Models
At the bottom of, Figure 3-20., Behavior and Structure Information Model, there are
shown two ways of representing concurrency. In one type concurrency is represented
using state, and in the other using parallel functions.

A complete view of behavior using parallel functions requires capture of Func-
tions, I/O and Control Operations. Behavior Diagrams are this type of view of Behav-
ior. There are two partial views. The first is of Function and Control. Functional Flow
Block Diagrams provide this type of partial view of Behavior. The second partial
view is of Function and Input/output. Data Flow Diagrams, N-squared charts, and
IDEF0 charts provide this type of partial view of Behavior.

A complete view of Behavior using state requires capture of State, Functions,
Input/output, Events and Control Operations. No single diagram capturing all this
information is known to the authors. Rather, two partial views are used to model the
Behavior. The first is of State, Control, and Events. State Charts provide this type of
partial view of Behavior. The second partial view is of Function and Input/output.
Data flow Diagrams, N-squared Charts, and IDEF0 Charts provide this type of partial
view of behavior. The literature describing state charts refers to functions with the
word activities. The activities are modeled in a partial view of the executable behav-
ior and can be allocated to objects in the same manner as when using behavior dia-
grams.

3.10 Models and Text for Requirements/Specifications

Models and text capture the same basic information for requirements and specifica-
tions. Often requirements/specifications are written as “The system shall do some
described task.” In this form it is an incomplete description for the implementer. To
be complete a requirement/specification in text needs to include:

• The name of the external system causing the excitation
93

Basics of Behavior
• What the external system does

• The outputs from the external system to the subject system

• All pertinent conditions

• What the subject system does in response

• All quantitative aspects of the response, how fast or how much

• The outputs from the subject system

• All pertinent conditions

• The names of the external systems which receive those outputs

Such a complete statement is the equivalent to a behavior model for the external sys-
tem linked to the response from the subject system.

A similar close relationship exists between behavior models and the operations
concept in text. The operations concept describes in narrative form what the external
systems do and what the subject system does in response. They are written from the
standpoint of how one would experience the system rather than as a list. If one exe-
cutes, either mentally or by computer, a linked behavior model of external system and
subject system, like Figure 3-13., Behavior Diagram for Pocket Knife in its context on
page 80, then a text description of what happens in the model is the operations con-
cept.

This redundancy is not wasteful.The requirements/specifications in list form are
very useful for contractual purposes because they provide a check list of what the
implementer must deliver. The operations concept in narrative form provides a story
form of exactly what the system is supposed to do. It is very valuable for those who
are not going to immerse themselves in modeling. These text descriptions, however,
cannot be computer interpreted because they are in natural language text. They will
remain ambiguous because natural language is not precise. The use of models aug-
ments the text forms by providing computer executable and transformable information
that is free from ambiguity and needed by the engineers who will design according to
the specifications. The art of engineering is to apply all these descriptions in text and
models to the problem at hand with precision and without wasting engineering effort.
It is an art.

3.11 Summary for Behavior

This chapter has described behavior with an informal approach and a formal approach.
We conclude with a textual definition of good practice in modeling.
94

Basics of Behavior
Behavior is a rigorous description of what a system is to do. It includes the func-
tions to be performed, the sequencing control of those functions and the inputs and
outputs from the functions. A good modeling approach for behavior keeps the behav-
ior information separate from the structure information. It also captures the behavior
information with enough rigor to allow the behavior to be executed and analyzed.

3.12 Exercises

1. Examine Figure 3-7., FFBD for Person Using Pocket Knife on page 75.

a. Why are “Hold Work” and “Operate Tool” concurrent.

b. If we add additional objects to the context, what other objects beside person
could be used for one or the other of these functions?

c. Would the behavior model need to change because of the added objects? Why?

2. Model a person as your subject system in the context of getting, dishes from the
cupboard, food from the refrigerator, cooked food from the stove and placing these
items on the dinner table.

a. Create the Object descriptions for each of the major objects. Include attributes
and functions in each Object description.

b. Create a static context model for Person.

c. Create a functional flow block diagram for the Person. Keep the functions con-
current if reality does not require a sequence.

d. Create a behavior diagram for the person.

e. Assign time estimates for each of the functions and make time line estimates
for the concurrent sets of functions.

f. Assign the work among three people to finish in minimum time.

3. Develop a behavior model for baking chocolate chip cookies.

4. Physically, it is possible to use pocket knifes in ways for which that they are not
designed.

a. What exceptions were not accounted for in the design?

b. How does the model need to change to reflect the exceptions?

c. Do the changes improve the usefulness of the model?
95

Basics of Behavior
3.13 References

Alford, Mack. 1977 A requirements engineering methodology for real time systems,
IEEE Transactions on Software Engineering, Vol. 1, No. 1

 Alford, Mack. 1992. Strengthening the systems/software interface for real time sys-
tems, Proceedings of the Second International Symposium of the National Coun-
cil on Systems Engineering, Vol1. 411, Seattle, WA.

Ascent Logic Corp. Product of Ascent Logic Corporation, 180 Rose Orchard Way,
San Jose, CA 95134.

Blanchard, BF and W. Fabrycky, 1990. Systems Engineering and Analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Harel, D. 1987. Statecharts: A visual formalism for complex systems, Science of Com-
puter Programming, 8, 231-274

Hopcroft, J. E., and J. D. Ullman, 1979. Introduction to Automata Theory, Lan-
guages, and Computation, Reading, MA: Addison-Wesley

Kockler, Frank R. et al. 1990. Systems Engineering Management Guide, Defense Sys-
tems Management College, US Government Printing Office, 000802001202-5.

Martin, James and Carma McClure. 1985. Diagramming Techniques for Analysts and
Programmers. Englewood Cliffs, N.J: Prentice-Hall

Mealy, G. H. 1955. A Method for Synthesizing Sequential Circuits. Bell System Tech-
nical Journal, vol. 34, no 5, pp 1045-1079.

MIL-STD-499 1968 Functional Flow Diagrams, AFSCP 375-5 MIL-STD-499,
USAF, DI-S-3604/S-126-1, Form DD 1664, June 1968.

Moore, E. F. 1956. Gedanken experiments on sequential machines, Automata Studies,
pp 129-153, Princeton, N.J.: Princeton University Press

Vitech Corp Product of Vitech Corporation, 2070 chain Bridge road, Vienna, VA
22182-2536

Yourdon, Edward. 1989 Modern Structured Analysis. Englewood Cliffs, N.J: Yourdon
Press
96

Core Technical Process
Core Technical Process
4.1 Process

A process is the sequence of actions done by people and machines. What engineers
do when they define a complex system is the Systems Engineering Process. The engi-
neering process applied to complex systems has been described using text in books
and standards. This chapter solidifies these ideas and makes them explicit and rigor-
ous with models of behavior and views of behavior. The models separate and distin-
guish several different processes that are described in the field of complex systems:

• The Product Life Cycle - The sequential phases of development and use
through which any product evolves.

• The Systems Engineering Process - The ordered set of engineering steps that
engineers use to go from user needs to specifications for all of the components
to be designed or procured. Two sub-processes are considered: a Systems
Engineering Management Process and a Systems Engineering Technical Pro-
cess

• The Acquisition Process - The set of tasks required of the product engineers
and manufacturers to assure those in authority that the project is meeting all
goals. There are numerous acquisition processes in use.

• The Design Engineering Process - The ordered set of engineering steps that
engineers in the many design disciplines, such as mechanical, digital, and soft-
ware engineering, use to design their components.

• The Manufacturing Process - The ordered set of implementation steps that
manufacturing engineers use to implement the manufacturing facility and to
produce the product.

Models can explain these processes in detail, show their relationships, and help engi-
neers follow the processes. Words like process and methodology are used with very
different meanings in different organizations and disciplines. They are defined here in
a way that is useful in discussing engineering activities.
97

Core Technical Process
The technical work of systems engineers, the technical process, is the focus of
this chapter. It will be described with a simple core process with a few major steps that
are applied repeatedly as the system specification develops. The repeated use of a sin-
gle core process is powerful in practice, and it simplifies both training and tool con-
tent.

4.1.1 Process, Methodology, and Tools
1. Definition of Process: A process is an ordered set of work steps, done by peo-

ple and machines, that are utilized to produce a set of outputs from a set of
inputs.

It can be executed by people, machines, computers or a combination of these.

It comprises a complete description of the process which includes naming the
steps, describing how the steps are ordered, and describing the inputs and out-
puts among all of the steps.

• The description uses executable models of behavior.
• The models can be expressed in any graphic or text language that spans the

abstractions needed and that is executable.
• This process as defined here is called meta-process in some disciplines

where “meta” means “a higher form of”
• The meta-process model captures the inherent concurrency of steps that may

be performed in parallel and do not have to be performed in a particular
sequence

2. Definition of Methodology: A methodology is a particular implementation of a
process.

The steps in the process are specified in great detail and alternatives in the
ordering of the work steps or in notation and views of information are removed
and standardized.

A methodology insures that a large number of workers performing the same
process will do each step in the same way. On large projects this is essential for
intercommunication among the people and ability to perform the work repro-
ducibly.

3. Definition of Tools: A tool is a thing used by people to automate their work

 Many tools are developed to automate a part of a single methodology
98

Core Technical Process
Some tools are developed to automate a meta-process and may be used inter-
changeably with a number of different methodologies.

Figure 4-1., Associations of Meta-Process, Methodology, Tools, and Infrastructure
shows the associations among meta-process, methodology, tools, and infrastructure
for engineering complex systems. There are many systems Engineering Methodolo-
gies which particularize, taylor, and instantiate the single Systems Engineering Meta-
Process. The figure shows that each Systems Engineering Methodology defines a set
of views and notations that will be used as a standard by all the workers following
that methodology.

The Tools are embedded in the Systems Engineering Infrastructure of businesses and
customers.

 Investment in training in methodology and tool use is required to make the
infrastructure effective and this is usually the most expensive investment. A plethora
of methodologies, views and notations exists at present. How they differ or are equiv-
alent is difficult to see by comparing them unless one can refer to a meta-process. At
present there exists a plethora of tools which automate parts of the many methodolo-
gies and the tools do not intercommunicate. Often a set of methodologies are chosen
that span the work, and the available tools are interconnected with custom interfaces

Systems
Engineering
Meta-Process

Systems
Engineering
Methodology

Systems
Engineering
Tool

Systems
Engineering
Infrastructure

in
st

an
ti

at
e

no
ta

ti
on

s
&

 v
ie

w
s

au
to

m
at

es

embedded inSystems
Engineering
Views & Notations

generates

defines

Figure 4-1. Associations of Meta-Process, Methodology, Tools, and Infrastructure
99

Core Technical Process
(Kronlof 1993, 11-12). For N tools there are N(N-1)/2 interfaces and the tools must
treat data with consistent meanings (semantics) and functionality. A new release of
any tool can affect (N-1) interfaces.

By learning what systems engineers do at the meta-process level it is possible to
understand what are the possible useful views of information and how the methodolo-
gies are similar and different. In “Basics of Behavior” on page 67, we described the
possible views of information. Tool integration requires that the same piece of infor-
mation always be used with the same meaning by all the tools. A well defined process
description is a prerequisite for integration.

4.1.2 Product Life Cycle, Acquisition, Systems Engineering Process
The systems engineering process describes the engineering work steps. It is applied at
many of the phases of the product life cycle which describes the phases or steps
through which a product evolves. There is often a blurring of the distinction between
the systems engineering process and the product life cycle phases.

It is helpful to decompose the systems engineering process into two sub-pro-
cesses, a management process and a technical process, which can be discussed sepa-
rately. Figure 2-2., Part List for System Engineering Process shows one level of this
decomposition.

The acquisition process is the process used by government or a company to
acquire product from a supplier. The systems engineering process generates the docu-
ments required by the acquisition process. Often the engineering steps executed are
driven by the need to produce documents. Best practice dictates generating the docu-
ments required by the acquisition process from the needed engineering steps.

Systems

SystemsSystems

Engineering
Process

Engineering
Management
Process

Engineering
Technical
Process

Figure 2-2. Part List for System Engineering Process
100

Core Technical Process
The basic relationships among Product Life Cycle, Acquisition Process and
Systems Engineering Process are clarified in Figure 4-3., Associations of Process,
Product Life Cycle and Acquisition.

This figure asserts that there is a single Product Life Cycle that is used by both Gov-
ernment and Business. Although different industries name the parts of the product life
cycle differently and have different degrees of emphasis on different phases, products
go through the following phases:

1. Domain Analysis Phase: Domain Analysis to define a product line and reus-
ability strategies for products or product components.

has a

Commercial
Acquisition
Process

has a

Government

Government
Acquisition
Process

Business

Product
Life
Cycle

use use

Systems Engineering
Technicalreports reports

supports and

specifications specifications
according toaccording to

Systems Engineering
Management

supports planning, review,

 specifies product

resolution of issues

Figure 4-3. Associations of Process, Product Life Cycle and Acquisition

Process

Process

Design Engineering
Discipline

provides detailed
specifications
101

Core Technical Process
2. Concept Phase: Concept Analysis to define a business strategy, a product con-
cept and establish its value to users.

3. System Phase: System Analysis to define and specify the product, its compo-
nents, and cost and performance

4. Feasibility Phase: Detailed component design, implementation, and integration
for an engineering model, a prototype, or partial prototypes sufficient to show
performance and manufacturing feasibility.

5. Initial Manufacture Phase: Low volume manufacture in pre-production vol-
umes with release of product to customers (perhaps selected customers). In the
commercial world this is the first point at which customer response can be mea-
sured and product success can be estimated based on actual response. It is the
first point for revenue payback on the development investment for businesses
which define and market their own products.

6. Full Scale Manufacture Phase: Full scale manufacture and shipping of product
to customers. It includes field support and product enhancement.

7. Field Support Phase: Customers are notified that manufacture has stopped and
that field support with spare parts continues.

8. Product Removal Phase: Product is removed from the market place, perhaps
with incentives to customers. It is often replaced with a more advanced product
which is in Phase 5. Product disposal occurs, sometimes in an ecologically
sound manner.

The Product Life Cycle is used by the government and by many commercial busi-
nesses. It is a process, a time ordered set of phases, a behavior.

The Systems Engineering Technical Process is the engineering work that sup-
ports and specifies the product in all the phases of the Product Life Cycle - specifica-
tion, cost and performance from Domain to Concept through Product Removal. The
core steps in the Technical Systems Engineering Process are performed repeatedly and
are concentrated in the early Product Life Cycle Phases: 1. Domain Analysis Phase, 2.
Concept Phase and 3. System Phase. If there are changes or problems during later
phases, this technical work will have to be revisited during the later phases.

The many different Acquisition Processes, both commercial and government,
require reports of technical progress to assure those with authority that the project is
progressing satisfactorily. These documents are not the systems engineering technical
work. They are generated from the information produced by the Systems Engineering
Technical Process. They vary tremendously in content, level of detail, and format.

The Systems Engineering Management Process supports the Systems Engineer-
ing Technical Process with planning, review, and coordination of issue resolution. It
makes it work.
102

Core Technical Process
The Systems Engineering Technical Process delivers all of its detailed technical
engineering specifications to the many different Design Engineering Disciplines
which will perform the detailed design of the mechanical, electrical, digital, software,
and people components for the system. The specifications need to be complete and
correct. They need to be delivered in the set of views and notations of the designers.

 In going from user needs to the specifications to the designers, any large com-
plex system is decomposed into a set of parts, a tree of several tiers of decomposition.
A core set of engineering steps are applied repeatedly to the subsystems and compo-
nents at each of these tiers.

4.1.3 The Systems Engineering Process Model
Any process, whether used for systems engineering, for semiconductor chip manufac-
ture, for business marketing, or for cooking food can be described as a behavior. This
involves the steps that are taken, the inputs and outputs for each step, and the ordering
of the steps. In order to clarify the Systems Engineering Process yet keep the figures
simple, the process will be described with a Functional Flow Block Diagram view
that shows the steps and their ordering.

The Systems Engineering Management Process is broken into three pieces:
project planning, review and replanning, and change control. Correspondingly, there
are a set of six modeling steps, core steps, in the Systems Engineering Technical Pro-
cess that define it. They are used repeatedly as the system is decomposed into sub-
systems and then sub-sub-systems. Figure 4-4., Extended Part List for System Engi-
neering Process shows these associations as a parts list.
103

Core Technical Process
Systems Engineering Management Tasks
The Systems Engineering Management Process is built from three major sub-sub-pro-
cesses which are ordered as shown in Figure 4-5., Model for the System Engineering
Process. These three sub-sub-processes are:

1. Project Planning Process

Creates an initial systems engineering management plan, SEMP, for the project
defining tasks, resources, resource assignments, milestones, costs and schedule
at each milestone.

The SEMP is a high level plan which requires additional detail as the project
evolves

The SEMP schedules the deliverable items required by the Acquisition Process

Systems

SystemsSystems

Systems Systems Systems

Engineering
Process

Engineering
Management
Process

Engineering
Technical
Process

Engineering
Project
Planning
Process

Engineering
Review and
Replanning
Process

Engineering
Change
Control
Process

Systems
Engineering
Core Technical
Process

Define Create Create
Effectiveness
Measures

Behavior
Model

Structure
Model

Perform
Trade-off
Analysis

CreateAssess
Available
Information

Sequential
Build &
Test Plan

Figure 4-4. Extended Part List for System Engineering Process
104

Core Technical Process
The SEMP must be modified as the market changes, customers change what
they want, engineers and others discover issues which require a change in the
plan to resolve the issues. The next two processes address these changes.

2. Project Review and Replanning Process

This process monitors the planned forward tasks and team performance for the
systems engineering technical work, the design, the implementation and inte-
gration of components and the validation of the system.

This process provides the reviews as required by the evolving SEMP. The
reviews are both frequent and fine grain at the level of contributing engineers,
and periodic and high level for customers and management.

The purpose of review is to discover issues as early as possible so that they
may be evaluated and corrected as early as possible to limit their cost and
delay.

This process modifies the SEMP as the appropriate resolution of issues is dis-
covered.

3. Change Control Process

This is a reverse process. It analyzes the impact of the issues discovered and
establishes how resource must be redirected and to what extent work already
completed must be revisited and modified.

Efforts as far along as step 6., integrate components, may have to be redirected
back to step 4. if requirements are altered late in the project.

Figure 4-5., Model for the System Engineering Process, is a functional flow
block diagram view of behavior. The FFBD shows the steps of the Systems Engineer-
ing Management Process as dark blocks, and the steps of the Systems Engineering
Technical Process as a white block. There are design and implementation steps which
are executed by other engineering and manufacturing disciplines. These steps are
shown in blocks 5. and 6. of medium darkness. The Systems Engineering Manage-
ment Process assists these two steps with resources, planning and resolution of sys-
tem level issues.
105

Core Technical Process
Because of the existence of the issues and the Change Control Process there is a well
defined way to analyze the impact of any issue, modify the engineering, manufactur-
ing, and integration work. The changes are captured by replanning and adjusting
reviews.

 It is not possible to show all of the possible feedback arrows from later efforts to
earlier efforts because they may start anywhere and go back anywhere depending
upon the issue.

And Perform
Change

3.

Perform SE

4.

Iterate twice each tier,

Engineering Technical Tasks led and performed by systems engineering

Engineering Management Tasks, coordination, performed by systems engineering

Core Technical

Perform

1.

Perform
Review &

2.
.

Tasks performed by other engineering disciplines, manufacturing, and

Process

Perform
HW, SW, Human

5.

Component
Design and

Implementation

Replanning

Control

 Project
Planning

 with other specialties in concurrent team

with other engineering disciplines

field service planned and coordinated by systems engineering

Integrate

6.

Components
& Validate

over all tiers

Figure 4-5. Model for the System Engineering Process

And
106

Core Technical Process
The steps of the systems engineering process are applied most intensively to the
first five phases of the Product Life Cycle: Domain Phase, Concept Phase through
Initial Manufacturing Phase. Systems engineering management tasks or technical
tasks may be required during the latter three phases of the Product Life Cycle, Full
Scale Manufacture through Product Removal, when system level issues arise.

Systems Engineering Technical Tasks
The Systems Engineering Core Technical Process is applied iteratively at each tier of
the product decomposition. The Core Technical Process is applied successively to the
business using the product, to the product, to the product subsystems, the product
sub-subsystems until specifications are available for the components to be designed
by the different engineering specialities. At each tier the process is applied twice: first
to analyze the context of the subject under study and second to analyze the subject
itself for decomposing it into components.

The Systems Engineering Core Technical Process is composed of six major
steps which are discussed in detail in the next section.

4.2 The Core Technical Process

Figure 4-5., Model for the System Engineering Process, shows how the core technical
process serves as one of the steps in the systems engineering process. It is applied
repeatedly at all tiers of the system part tree. It is applied twice each tier; once to the
context and once to design the system in terms of its subsystems. From the view-
point of the product life cycle it is applied repeatedly from domain and concept anal-
ysis through definition of individual components.

Figure 4-6., FFBD View for the System Engineering Core Technical Process,
shows the order of the six engineering modeling steps that make up the core technical
process.
107

Core Technical Process
4.2.1 The Six Steps in the Core Technical Process
The six steps accomplish the following tasks:

1. evaluates and categorizes available information and obtains missing informa-
tion.

2. defines the criteria for optimization, the effectiveness measures. These are a
small subset of all the requirements; perhaps three to fifteen in number even for
large complex systems. They are the criteria that mean success or failure.

3. defines the behavior that is desired with an executable model.

4. defines executable structure models of the alternative sets of things, objects,
from which to build the system. In either step 4.3 or step 4.4 an allocation of
behavior onto objects is made. Different sets of objects can be used to build the
system and for any of these sets the behavior can be partitioned among the
objects in many different ways. These alternatives produce a number of alterna-
tive designs, or architectures.

5. trade-off, selects among the alternative designs or architectures. Any design to
be feasible must meet all of the performance requirements at system level. The
best feasible design is selected based on the effectiveness measure values. This
is the optimization process. It is a key best practice in the engineering of com-
plex systems. One possible branch from Step 5 is an iteration back to the begin-
ning made necessary by no alternative design or architecture meeting the

4.1
Assess

Available
Information

AND

4.2
Define

Effectiveness
Measures

4.3
Create

Behavior
Model

4.4
Create

Structure
Model

4.5
Perform

Trade-Off
Analysis

4.6
Create

No Feasible
Solution

Feasible

 Iterate to Find a Feasible Solution

Solution
& Test Plan

Build
Sequential

Figure 4-6. FFBD View for the System Engineering Core Technical Process
108

Core Technical Process
requirements. When this occurs, the steps 1 - 5 are repeated to find feasible
solutions, or requirements are relaxed so that a previous non-feasible solution
is accepted, or the project is terminated for budget and schedule overrun, or
simple impossibility.

6. creates a plan, when a feasible and near optimal design or architecture has
been found. It provides an implementation plan for the selected design or
architecture. The plan takes into account identified issues, successive product
releases, risk remediation, partial builds for early validation, time to market,
budget, and available resources.

Steps 2, 3, and 4 are concurrent activities. They can be ordered and some methodolo-
gies do this. In practice it is found that engineers move their attention among these
three tasks. As understanding progresses in one of the tasks, it suggests changes in the
other two.

These six core steps in the Core Technical Process are not applied once for com-
plex systems, but twice each tier over all tiers of the system part tree. These core steps
are described in more detail below. A chapter is devoted to each of them to define the
subsets they contain and to illustrate the work with an example. Each chapter pro-
vides an information model (structure of the information item associations) for each
of the steps.

 Assess Available Information
The first step is to Assess Available Information. That information may be in text
form, in rigorous models, or in the minds of a collection of potential users of the sys-
tem. This step involves collecting available information and categorizing it in terms
of its source, its quality (what is wrong with it), and how it is to be used. Additional
information is gathered if necessary. The information is upgraded and corrected as
necessary. If prior work has been done thoroughly and rigorously with modeling,
there is a minimum of activity in this step.

If the information is provided in the form of rigorous executable models there
will be a context model both static and dynamic for the system or components under
consideration. These models will include the interfaces associated with assembly of
the components to make a whole, the excitations of the system or components, the
conditions under which this occurs, and the responses to those excitations.

When the available information has been assessed the next steps in the Core
Process are undertaken. The next three steps are interdependent and they are carried
out concurrently.
109

Core Technical Process
Define Effectiveness Measures
Effectiveness Measures are the small subset of the requirements that are so important
that the system will fail if they are not met and will be a hugh success if they are met.
They are the criteria used to make the trade-off decisions of what to build. The design
of a system is an ill posed problem that has no solution without a set of criteria to
guide choices. They correspond to the regularization functions used in optimal control
or in calculus of variations.

The effectiveness measures are critically important because they are the criteria
that drive the system solution that is found. They are critical because all the stakehold-
ers - engineers, management, users and operators - must agree on them or there will be
future problems. If these criteria are not both correct and agreed to, then the system
development will be plagued with costly requirements changes and may miss its mar-
ket. The effectiveness measure results are extremely useful in reviews with manage-
ment, users and operators who do not want to know all of the technical engineering
detail but do want to know about these critical system criteria.

 Effectiveness measures are ranked by a set of priorities that can be established
by statistically valid methods (Saaty 1983). The effectiveness measure values are
either computed from the properties of the system components and their behavior, or
are established by group surveys which establish user preferences. The computations
are based on mathematical models that use values of attributes.

Create Behavior Model
In systems engineering the system is described with separate views of behavior and
structure so that alternative designs can be found by reallocating behavior among
objects.

The behavior model captures what any thing, or object is to do. It contains
enough information to be executable. The model must capture all of the steps or func-
tions involved in the behavior, how the functions are ordered, and all of the inputs and
outputs of the functions. If the ordering of the functions allows alternative responses
(paths) then the conditions for the alternative paths must be captured.

When the six core steps are applied to context, the behavior of the external sys-
tems which excite the subject system is captured. The response of the subject system
to these excitations is also captured as a behavior. The excitations and responses con-
stitute the functional requirements for the subject system.

When the six core steps are applied to the subject system, the behavior model
refines the behavior of the subject system in greater detail. The level of detail must be
sufficient to allow the subject system behavior to be partitioned among subsystems
from which the subject system will be built.

It is the structure model that describes the structure of the context and the design
of the subject system.
110

Core Technical Process
Create Structure Model
This core engineering step captures static structure of the system context or of the
subject system or of the components of the system. Static structure involves the
description of things, objects and their associations. This information is recorded in
text and graphically as described in “Basics of Structure” on page 35.

Because large complex systems are built from thousands or hundreds of thou-
sands of parts, the Structure Model is developed hierarchically. The hierarchy is
treated in the next section of this chapter.

At the system level, important performance characteristics are known for the
system, i.e. acceleration for a car. The performance requirement of acceleration
depends upon the properties of components from which it is built, like engine horse-
power, transmission ratios, and total car weight. All of the attributes important to per-
formance must be captured in the object descriptions of the parts, weight for all parts,
horsepower for engine, etc. Budgeted values for these attributes must be supplied for
designers to use as design targets.

This step usually produces alternative sets of objects which could be used and
alternative ways of allocating the desired behavior, from step 4.3, among the objects.
Alternative designs and architectures emerge form the completion of all three steps:
2, 3, and 4.

Perform Trade-Off Analysis
It is in trade-off analysis that the performance requirements and the effectiveness
measures are evaluated at system level. The objective is not the optimization of indi-
vidual components, but the optimization of the system. The attributes, properties of
the components are used to calculate the system level performance and effectiveness
for the alternatives that have been found in the previous steps

Each component has a set of attributes like cost, weight, reliability, power con-
sumption, or heat dissipation. These attributes are the arguments of the equations for
calculating both performance and Effectiveness Measures. During Trade-Off Analy-
sis values must be obtained for every attribute of every component. This is done with
the following order of priority because of reliability of the values. It is done first by
measurement of actual parts, second by simulation, and third by estimation. It is in
this core step that physical simulation is performed to get at performance using the
laws of physics, chemistry, logic, and biology. Simulation is performed to get the val-
ues needed for attributes that are part of the performance and effectiveness calcula-
tions. When the attribute values are available, performance is calculated at system
level. It is important to optimize the system rather than the components. The alterna-
tive architectures or designs that do not meet performance requirements are dis-
carded; they are not feasible. Those that meet performance requirements are feasible
and one must select among them.
111

Core Technical Process
This selection is done by calculating the Effectiveness Measures and using them
as the criteria for selecting a near optimal architecture.

When a near optimal architecture is established, it is necessary to examine
implementation issues. Implementation issues arise in applying the core steps to the
system context and to the system itself. They occur at all of the tiers of development.

Iterate to Find a Feasible Solution
 Iteration may be performed for several reasons.

First, a feasible solution may not be found among the architectures that were
established as alternatives in the earlier steps.

Second, the engineering work may be partitioned among several teams for a
large system, and each team may iterate through the partial portions of the system for
which it has responsibility as an intermediate engineering step to refine their own
work to a modest number of alternatives. Unless the contributions of the several teams
are combined and a system level trade-off is done, this approach will lead to sub-opti-
mization of components rather than to system optimization.

Create Implementation, Sequential Build, and Test Plan
This step controls prototyping, risk, and getting to market. It is created to account for a
set of Business Realities.

There are several reasons for considering implementation. In some cases the
resources available and the time to market dictate the partitioning of the System into
several pieces that will be sequentially released to the marketplace as a set of products
ar a series of releases. In some cases the technical work uncovers business opportuni-
ties or a need for partnership with other businesses that must be examined in parallel
with the technical development and incorporated in the overall planning.

In many cases certain portions of the development are high risk. The plans for
these portions need to be advanced in time with alternatives planned to accommodate
the risks.

For large complex systems it is often an advantage to assemble partial builds of
the system which can be used for early validation of critical threads through the sys-
tem and for early use of parts of the system in protected and controlled circumstances.

The implementation plan is adjusted to encompass and compromise among all of
these needs. The Sequential Build and Test Plan provides the ordering of the build and
the test of Components, which may be built completely or partially. The components
are assembled to create the system and the responses of the System are measured to
validate the implementation.
112

Core Technical Process
The Sequential Build and Test Plan is incorporated in the Systems Engineering
Management Plan. The regular inclusion of this step in the Core Technical Process
forces a periodic updating of the SEMP at the time that the project develops new
valid information.

Application at Each Tier.
It is important to recognize that this optimizing process applies to both the system
context and to the subject system itself. Some of the most important trade-off deci-
sions for cost, performance and market acceptance involve trades of what things
belong in the system rather than outside the system and what behavior will be in the
system rather than in an external system outside it.

The same core engineering steps are used for analyzing context and for analyz-
ing the subject: system, subsystem, sub-sub-system., as shown in Figure 4-7.,
Sequential Application of Core Technical Process to Context and Subject. The
sequential analysis of context and of subject are applied at each tier of engineering
decomposition, for domain analysis, concept analysis, system requirements and syn-
thesis, subsystem analysis, etc.

1.

2.

3.

4.

5. 6.

Initial
Context

Information

Sub-subject
Requirements

Subject
Architecture/Design Model,

PerformanceContext
Architecture/Design Model,

Requirements

Context
Implementation

Plan

Subject
Implementation

Plan

Analyze Context Analyze Subject

1.

2.

3.

4.

5. 6.

Figure 4-7. Sequential Application of Core Technical Process to Context and Subject

Model
113

Core Technical Process
4.3 Hierarchy

Systems engineering is inherently hierarchical. A hierarchy of parts is a fundamental
abstraction that people use naturally to their simplify thinking about things. This
abstraction allows us to think about a car as a whole, or to think about its parts, like the
engine, or to think about subparts like a fuel injector.

4.3.1 Small Systems vs. Large Systems
The development of small systems can be accomplished with a handful of engineers
who can intercommunicate frequently and jointly track all of the aspects of the devel-
opment. The outputs, subject architecture/design model, subject performance, subject
implementation plan, and sub-subject requirements model fully define the context of
each of the sub-subjects.

In the development of large complex systems the core technical process needs to
be applied twice in each tier, because of the expansion of parts and of engineering
teams. The number of parts in a tier increases exponentially as the development moves
from tier to tier. In large system developments there is a corresponding increase in the
number of engineering teams applied. These teams receive context, behavior and
requirement information for their part of the system from other teams which devel-
oped the information at the tier above. It is important that the receiving team use the
core technical process to thoroughly review the information received. It is important
for them to correlate their information with that of other teams working on parts that
interface with their part.

A small team developing a small system can track all of the information and
eliminate most of these reviews.

4.3.2 Tiers of Hierarchy
Hierarchy is applied in a particularly useful way in systems engineering. At each level
or tier of the hierarchy something different is studied and both Context Analysis and
Design and System Analysis and Design are performed at each tier for large systems.
It is necessary to use several tiers of context analysis and design and of system analy-
sis and design because there are several different questions which need to be answered
for any product. These questions must be answered by analyzing different things at
different levels or tiers of the parts hierarchy: Concept, System, Sub-system, etc. The
questions are:
114

Core Technical Process
• Concept Tier: Core Process applied to the business using my product to estab-
lish what my product should be to enhance the business.

• How does the business change when my product is incorporated?
• What value does my product have to the business or user for which it is

being developed?
• Are there product segments which are valuable to the customer which had

not been identified and that my product should address?
• Which are the most valuable product segments to the customer and what is

their value?
• In what sequence do the product segments have to be introduced to the cus-

tomer to get the product installed? Low value segments may have to be
installed before high value segments can be made to work.

• What is the emergent behavior (effectiveness measures) of my product, sys-
tem, for high value to user,?

• What things and behavior belong inside my product?
• With what does my product interface, its context?

• System Tier: Core Process applied to my product. Use to review context and
requirements. Use to create product design.

• Review product context received from Concept Tier
• Review the emergent behavior the product must exhibit (requirements)

received from Concept Tier
• The emergent behavior (requirements) is reviewed through the analysis of

the system context, statically and dynamically using the core technical pro-
cess

• What is the product design?
• The product design defines the components (subsystems) which comprise

the product and the behavior (requirements) of each subsystem
115

Core Technical Process
• Sub-System Tier: Core Process applied to my product’s subsystems. Use to
review context and requirements. Use to create product subsystem designs.

• Review product subsystems context received from System Tier
• Review the emergent behaviors the product subsystems must exhibit

(requirements) received from System Tier
• The emergent behavior (requirements) is reviewed through the analysis of

the sub-system context, statically and dynamically using the core technical
process

• What is the emergent behavior the product sub-sub-systems must exhibit
(requirements)

• What are the product sub-system designs?
• The sub-system design defines the components (sub-sub-systems) which

comprise the sub-system and the behavior (requirements) of each sub-sub-
system

The hierarchy continues until it is possible to separate out the components that are
hardware, software, and people - users and operators of the systems. So long as the
components are composed of combinations of mechanical, electrical, digital, software
things, and of people, it is not possible to provide requirements to the different engi-
neering disciplines that do the detailed design and implementation.

When the requirements for hardware, software, and people components can be
described separately, they are transmitted to the respective engineering design and
implementation teams. Note that the systems engineering team needs to contain engi-
neers who are expert in the relevant hardware, software and people engineering disci-
plines. This description of hierarchy is summarized in tabular form in Table 1.

The table contains an additional tier, the Domain Tier. This is the tier of engi-
neering work that develops a family of products rather than single point products. It
produces design for reusability. The subject system under engineering analysis is a
domain or set of businesses or users using our product. The businesses in the domain
may be very different but able to profit from a common capability. The domain of
businesses may be a single focused type of business studied at different points of time
in its future evolution.
116

Core Technical Process
• Domain Tier: Core Technical Process applied to model each business in the
domain with my product in the business

• What value does my product have to a collection of businesses or users
which could benefit from it?

• Are there product segments which are valuable to multiple businesses or
users?

• Which are the most valuable product segments to the multiple businesses or
users and what is their value?

• Am I designing my product so that it separates into segments that can be
sold to multiple businesses?

• In what sequence do the product segments have to be introduced to the
multiple businesses or users to get the product installed? Low value seg-
ments may have to be installed before high value segments can be made to
work.

• Is my product family adaptable to meet a variety of price and performance
targets?

The same core process is used at all tiers. What changes is what the process is applied
to. At each tier there is a subject system to which the core technical process is
applied. At each tier the subject system interfaces with external systems in its envi-
ronment to establish its context. At each tier the subject system is decomposed into its
parts, or, if working bottom up, the subject system is synthesized from its parts. At
each tier there are some major questions to be resolved as summarized in the output
column of Table 1., Tiers.

Tier
Subject
System

External
Systems

Components Output

Domain Tier Collection of
customer busi-
nesses

Customer sup-
pliers and his
Customers

Our product
and product
segments
which can be
reused

Dollar value,
Requirements
for Product
line or Library
of components

Concept Tier Customer
business with
our Product in
it

Customer sup-
pliers and his
Customers

Our product
and Customer
business seg-
ments

Dollar value to
Customer
Business &
our Product
context and
Behavior

Table 1: Tiers
117

Core Technical Process
4.3.3 Hierarchy, Waterfall, Top Down Development
The fact that systems engineering is inherently hierarchical does not imply that the
work must proceed top down or according to a waterfall model. The work is hierarchi-
cal because it focuses on questions and generates results that can only be obtained by
analyzing different levels of detail: collection of businesses, a business, a product,
segments of the product, sub-segments, etc. Depending upon the application the work
may proceed top down or bottom up, or top down simultaneously with bottom up,
meet in the middle and finish.

Most development activities do not start with a clean sheet and a totally new
product. Most developments are extensions of earlier systems or additions to an earlier
system. In these cases the work is highly constrained to a few new or modified compo-
nents and many of the existing interfaces must be maintained. Such projects are both
top down and bottom up and may involve re-engineering and reverse engineering if
the existing system is not fully documented in its present state.

In all of these cases the systems engineers will very likely work at several differ-
ent tiers of decomposition. They will need to apply both context analysis and design
and system analysis and design at the various tiers unless there is complete existing
information available to them.

System Tier Our Product Customer
business seg-
ments

Our Product
Segments

Product Seg-
ment require-
ments, System
Performance
& Cost Targets

Sub-system
Tier

One of Our
Product Seg-
ments

Customer and
Our other Seg-
ments

Our Product
Sub-Segments

Sub-segment
specifications
& System per-
formance

Continue until Hardware, Software and People components are separated.

HW, SW &
People
Requirements
Tier

One of Our
HW, SW or
People compo-
nents

Other HW,
SW and Peo-
ple compo-
nents

The sub-com-
ponents

HW & SW &
People compo-
nent Require-
ments &
System Perfor-
mance

Tier
Subject
System

External
Systems

Components Output

Table 1: Tiers
118

Core Technical Process
4.4 Re-Engineering

Re-engineering of large complex systems is often required because hardware compo-
nents have become obsolete or unavailable, or because the software in the system has
been made unmanageable in a cost effective way. The most complex situations are
those in which support information for the existing system is totally out of date with
changes made to the system and yet the system must be kept functioning without
down time through the new system introduction and change over. A major issue is the
lack of correct higher level documentation.

Under these conditions, the work shown in Figure 4-5., Model for the System
Engineering Process on page 106, proceeds as described earlier. It develops new
specification from the current user needs. This provides information about how the
system is used and about extensions which must be added to provide new capability.
In parallel with this work it is necessary to reverse engineer the existing system to
replace the missing information. The reverse engineering does not need to replace the
old documentation of structure of the existing system because that structure will be
replaced in the new design. The reverse engineering needs to extract higher level
behavior from the available lower level details.

This is a particularly difficult problem for many older software components.
Many of them have been constructed with methodologies which distribute the high
level behavior widely through the software. Reverse engineering is a current topic of
study and tools to help with the issues are emerging. It can be accomplished manually
by tracing responses through the system and extracting high level logical units of
behavior.

When the forward Systems Technical Process results meet the Reverse Engi-
neering results in the middle, then the work can continue systematically with a com-
bination of new components and reverse engineered components.

A major advantage of the systematic approach presented here is that it provides
for thorough documentation in models. Domain analysis is included in the systematic
approach to design in documented reusable products and components where the cost
of the domain work is justified. With thorough documentation with models the
reverse engineering is avoided and re-engineering is simplified and practical.

4.5 Behavior Model for the Core Technical Process

For completeness, Figure 4-1., Associations of Meta-Process, Methodology, Tools,
and Infrastructure adds input and output to Figure 4-6., FFBD View for the System
Engineering Core Technical Process on page 108 to provide a behavior model for the
core technical process.
119

Core Technical Process

4.6 Union of Best Practice with Modeling

Systems Engineering best practices have been developing for hundreds of years and
experienced rapid advance and codification in the 1950’s and 60’s for complex sys-
tems. The best practices incorporate strong emphasis on optimization and trade-off for
the system performance.

Other emerging disciplines, such as software engineering and mechanical engi-
neering have emphasized rigorous modeling and automated transformations of com-
plex design information. Many of the methodologies applied to software engineering

4.1
Assess

Available
Information

AND

4.2
Define

Effectiveness
Measures

4.3
Create

Behavior
Model

4.4
Create

Structure
Model

4.5
Perform

Trade-Off
Analysis

4.6
Create

No Feasible
Solution

Feasible
Solution

& Test Plan
Build

Sequential

Alternative

Architectures
Designs or

Business
Realities

Plan

Corrected,
Categorized
Information

Effectiveness Measures
Subsidiary Equations
Priorities

Behavior

Map of
Functions

Near Optimal
Architecture
or Design

Figure 4-8. Behavior Model for the System Engineering Core Technical Process
120

Core Technical Process
lack the engineering steps used for trade-off: definition of effectiveness measures,
trade-off, and creation of a sequential build and test plan (Oliver 1995). Some do not
incorporate the capture of concurrency (Selic, Gulekson and Ward 1994).

The model based approach described here merges the best practices of the sys-
tem engineering of complex systems with the use of rigorous modeling and auto-
mated transformation of complex design information prevalent in other disciplines.

The following six chapters describe each of the modeling steps in the core pro-
cess in more detail. In the course of these discussions it will be necessary to classify
things like requirements to show how different types are captured in the models and
associated with other information items.

4.7 Exercises

1. Apply the Core Technical process to the metal knife assembly of the six-blade
pocket knife example. Use the examples of Chapters Two and Three as available
information. Reuse directly as much of the available information as possible.

a. Assess the initial information available. Identify missing information. Classify
the kinds of information.

b. Create a static and dynamic context for the metal knife assembly.

c. Create effectiveness measures for the knife which would help it dominate its
market.

d. Create a structure model for the metal knife assembly. Will this will include an
interconnection model of the parts.

e. Create a behavior model for the metal knife assembly.

f. Allocate functions between the behavior and interconnection models.

g. Include all important attributes in the object descriptions of each part and bud-
get attribute values to the attributes.

h. Identify the work you would do to extend this description to an entire product
line of knives. Identify the domain involved in that work.

2. What effects on the design would result from making the three parallel core steps
occur serially?
121

Core Technical Process
4.8 References

Kronlof, Klaus 1993 Method Integration: Concepts and Case Studies. Chichester:
John Wiley & Sons

Oliver, David W. 1995. Systems engineering & software engineering, contrasts and
synergies, Fifth Annual International Symposium National Council on Systems
Engineering St. Louis, MO. Vol. I, 701-708.

Saaty, Thomas L. 1983. Priority setting in complex problems, IEEE Trans. on Engr.
Management. EM-30: 140-155.

Selic, Ben, Garth Gulekson, and Paul T. Ward, 1994. Real-Time Object-Oriented
Modeling, pp. 484-486, John Wiley & Sons Inc.
122

Assess Available Information
Assess Available Information
5.1 What Core Step 1 Is

This chapter describes how to receive and assess the information that is made avail-
able to a systems engineering team. If the team is trained in modeling, the informa-
tion available from users, operators, heritage systems, clients, and marketing can be
captured in models as described in the succeeding chapters. Both the process and the
system descriptions that result are rigorous. In assessing the available information,
systems engineering teams must:

• Collect the existing information

• Combine all collateral information, including change documents which may
be received during the collection period.

• Classify problems, define issues, and trace requirements to origin

• Resolve issues

• Generate and review requirements database and operations concept.

• Correct any problems in the engineering database.

Along the way systems engineers must overcome a number of problems. Not the least
of these is the manner in which the information arrives. The most common form for
systems engineers to receive their information is in large complex text documents.
Frequently the requirements will be mixed with other forms of information which
must be separated. The separated requirements may be redundant, contradictory,
incorrect, incomplete, unverifiable, and poorly written. The other primary source of
information is heritage systems which typically were not designed with any rigorous
methodology and have little readily usable information available without reverse
engineering the existing product.

This chapter describes a classification, a taxonomy, for natural language text
requirements to provide a consistent basis for discussing them. It describes relation-
ships among them. It goes on to provide a detailed process for carrying out a com-
plete assessment and classification of the text material. This is difficult work when
the text is thousands of pages.
123

Assess Available Information
The systems engineering best practice defined in this book describes how the
text can be augmented with executable models which will be rigorous and supported
by computer tools when that modeling work is funded and encouraged by manage-
ment. Management acceptance of time spent in the up-front modeling process is
essential to overall success of the methodology. While great lip service is often given
to these phases, the temptation is great to do a makeshift job in order to get to “the
important stuff.”

If the information is provided in the form of rigorous executable models, there
will be a context model, both static and dynamic, for the system or components under
consideration. These models will include the interconnections and interfaces associ-
ated with assembly of the components to make a whole, the excitations of the system
or components, the conditions under which this occurs, and the responses to those
excitations. These models are reviewed by applying the technical core process to
them. This enables engineers to use their experience and creativity to find the
unknown missing things, “unknown-unknowns”. If the executable models have been
captured in automated tools, the tools can be used to check for consistency and cor-
rectness of the models. This procedure will find errors in complex details that are hard
for engineers to spot otherwise. The expense of correcting an “unknown-unknown”
error is small in the earliest stages of development, and very large in late stages. Both
automate checking of models, and review by experienced and creative engineers are
essential to find errors early. This chapter is about the review and early correction of
the available information.

5.2 A Requirements Taxonomy

We first develop a taxonomy which is used to categorize the requirements as they are
encountered and developed.

At any point of time in a project the engineers deal with two kinds of informa-
tion: the Initial Information at the beginning of the project and the Developed Infor-
mation created during the project. Initial Information received at the beginning of a
project is often largely in the form of text. It consists of Text Requirements, Heritage
Information, User Information, Text Operations Concepts, and Models. These associa-
tions are shown in Figure 5-1., Associations of Available Information.
124

Assess Available Information
The Text Requirements trace to the models. Exactly how they trace into the several
kinds of modeling elements depends upon what kind of requirements they are. Types
of requirements will have to be developed. The Text Operations Concept narrates the
excitation response interactions among the subject System and the External Systems
with which it interacts. The Text Requirements are classified in three important,
ways:

1. By their origin,

2. By the work to be done to fix them, and

3. By their use.

When engineers identify and classify requirements, they can create the needed trace-
ability links for the requirements and correct the identified problems discovered
among them. Figure 5-2., Classification of Text Requirements is an information
model showing this classification for text requirement. Note that these three classifi-
cations are independent.

A single requirement may be, for example, Original, Functional, and Verifiable
by Test. Each requirement is classified by origin, work done, and its use. These cate-
gories are used throughout the design process in tracking the needs and validity of
any of the requirements and in creating traceability links.

Available

Developed
Information

Initial
Information

Heritage
Information

Initial Text
Operations
Concept

Initial Text
Requirement

User
Information

Initial

trace to

narrate

Information

Figure 5-1. Associations of Available Information

Model
125

Assess Available Information
5.2.1 Classification by Origin
Every requirement must start somewhere. This classification tracks where that
somewhere is.

The majority of Initial Text Requirements are classified as Original
Requirements. These are, quite simply, those requirements which were expressed
directly in the text documents given to the systems engineering team and often
appearing in contracts. Original Requirements are frequently expressed in sen-

ImpliedOriginal

trace to

trace to
trace to

Functional Temporal
Performance

Non-temporal
Performance

Design

Verifiable

AnalysisTest

InconsistentNot Verifiable Compound Redundant

Poorly
Written

TBD/TBR

by use

Interface
Requirement

Reference
Requirement

point to

Derived
Requirement

trace toby origin

by work to be done

RequirementRequirement

Developed
Information

Requirement
Requirement Requirement

Requirement

Figure 5-2. Classification of Text Requirements

Survey

Requirement
Initial Text

Inspection
126

Assess Available Information
tences such as, “The system shall obtain a speed of at least 100 kph.” Some of these
requirements do not define the system, but rather point to reference requirements,
another category.

The other category of Original Requirements is that of Reference Requirements.
These are entire sets of other requirements such as any of the ISO standards. An orig-
inal requirement might state that the rollover protection system, ROPS, must meet
NEMA 123-456, which is a standard for ROPS established and maintained by
NEMA.

The Original Requirements are closely related to another category: Derived
Requirements. As the original requirements are studied and as modeling proceeds,
additional requirements are found. These are the Derived Requirements and they trace
to the Original Requirements from which they were derived. Derived Requirements
may be derived from other Derived Requirements. They are part of the Developed
Information.

Another category of requirements is Implied Requirements. These have no pre-
cursor in any documentation. They represent omissions in the imperfect initial infor-
mation. When they are identified and created by engineers, they become part of the
Developed Information. They occur less frequently than other types of requirements.

5.2.2 Classification by the Work Needed to be Done
When requirements are initially identified and examined, they often have one or more
defects which must be corrected. The defects are identified and corrected by the engi-
neers before proceeding to other steps in the core process.

The first determination that needs to be made is whether the requirement is ver-
ifiable or not. For a requirement to be verifiable there must exist some measure that
can be used to determine if the system as designed or produced satisfies the require-
ment. There are both quantitative and qualitative measures which can be used.

Those requirements which are verifiable requirements are further broken down
by the approach that will be used to verify them. The four sub-classes are:

• Test,

• Analysis,

• Survey, and

• Inspection

Test and analysis lead directly to quantitative results. Survey is used in the
extremely important situation of establishing user preferences. This may be done
through surveys with questions. It is done more effectively by obtaining responses
from users who try out product prototypes. General Electric maintains a large facility
at its Louisville appliance park where appliance users come and utilize new versions.
127

Assess Available Information
Their reactions are analyzed statistically. Inspection is used for validation when an
examination of the product will show that a requirement has been met. For example, a
requirement for the color of something can be verified by inspection.

Regardless of which means is to be used, once a requirement is determined to be
verifiable, the verification procedure must be designed and entered into the acceptance
test suite. System level models which capture executable excitation and response of
the system provide a direct link between the specification development and the accep-
tance test suite.

If a requirement is found to be Not Verifiable then there is work to be done. It is
likely that system analysis with the core technical process will be necessary to formal-
ize what was meant by the requirement and to recast it in a verifiable form. An exam-
ple of this situation is provided in the last part of this book which is a coherent
example of the modeling process.

Compound requirements state two conditions which must be met within one
statement such as in “The wheels shall be round and made of rubber.” Here two
requirements exist. In this case it should be split into two separate, traceable require-
ments. These two new derived requirements will, of course have to trace back to the
original compound requirement in order to be able to demonstrate to the customer that
all the expressed requirements were met.

Redundant requirements are a hard category to find. It is fortunate that they are
relatively benign. They increase the tracking load and, if they are numerous enough,
can make the system appear more complex than it really is. When redundant require-
ments are detected, they can be merged after careful consideration that they truly are
redundant.

Inconsistent requirements are quite commonly found in system specifications for
large projects. The specs are built by teams each responsible for some end functional-
ity, and these functionalities may have conflicting objectives which need to be sorted
out during system design. It is important to detect conflicting requirements as soon as
possible to avoid making incompatible design decisions for parts of the system. Every
bit of delay increases the cost of correcting the requirement.

Often the original specification documents will include TBD and TBR in places
where the requirements are known to be incomplete. TBD and TBR flag To-Be-
Defined and To-Be-Resolved issues. These requirements must be scheduled for reso-
lution and tracked closely because there eventual definition can have profound impact
on the system design.

Poorly Written is the last sub-class in the work to be done classification. Ambig-
uous and other hard to understand requirements fall into this grouping. They must be
rewritten.
128

Assess Available Information
5.2.3 Classification by Their Use
Text Requirements are classified by use so that they can be traced or budgeted prop-
erly to appropriate modeling entities, i.e. functions or components. This classification
helps the project to monitor completeness and correctness of the modeling by provid-
ing answers to questions like: have all performance budgets been made to compo-
nents? The kinds of requirements by use are:

• Functional Requirements which state what the system must do. They trace to
the functions which will accomplish them. In the models these functions are
encapsulated in objects and appear in the executable behaviors. They do not
state how the system will be built, only on what it shall do.

• Temporal Performance requirements which give values for the amount of time
there is for the system to respond to stimulus. These time values are budgeted
to the functions that carry out the response.

• Non-temporal Performance requirements which give values for properties of
the system like cost, weight, size, power consumption, availability, security,
etc. These quantities are budgeted to the components which make up the sys-
tem. The components are objects and must have attributes that match these
quantities. It is the components and sometimes the structure of the assembly of
components that have properties like cost, weight, moment of inertia, mean
time between failure, etc.

• Interface requirements which specify input/output, limits of flow, and timing
at the interfaces between components. The behavior of the components at the
interface must be adjusted to meet the Interface Requirement. These require-
ments are increasingly important because equipment from many manufactur-
ers and sited all over the world must interact and intercommunicate. Industry
standards in interfaces are critical. At the time of writing this book, the lack of
accepted interface standards for wide-band coax modems is, along with cost
and software issues, a limiting factor in introducing two way communication
in the cable systems wired to 60% of US homes, (Perry 1996). In large com-
plex systems thousands to tens of thousands of interfaces exist and must be
consistent for the system to work.

• In the real world, the specification documents which one receives frequently
contain Design Requirements which predetermine a design choice. For each of
these it is important to raise an Issue (which traces to the Design Requirement)
with the customer of whether this requirement is meant to apply, or whether it
is a misstatement of a requirement in the form of design. The Issue traces to a
Resolution. The Design Requirement becomes either an Adjudicated Con-
straint which will be followed, one of the other kinds of requirements, or it is
eliminated.
129

Assess Available Information
The classification information in Figure 5-1., Associations of Available Informa-
tion and Figure 5-2., Classification of Text Requirements, can be combined. The infor-
mation above describing Design Requirements tracing to Issues tracing to Resolution,
and then to Adjudicated Constraints or other kinds of requirements can be added in.
Since the engineering work also develops models based on any Initial Models
received, a Developed Model object can also be added. This results in the complex
information model of Figure 5-3., Information Model for Requirements.
130

Assess Available Information
An association which emerges from this modeling is that the Developed Infor-
mation consists of Derived Requirements, Implied Requirements, Adjudicated
Constraints, and Developed Models. All of the types of requirements and the

Implied

trace to
trace to

Functional Design

by use

Interface
Requirement

Derived
Requirement

trace to

Requirement

Initial Text
Requirement

Developed
Information

Requirement Requirement

Available

Initial
Information

Heritage
Information

Initial Text
Operations
Concept

User
Information

Initial

trace to

narrate

Information

Temporal
Performance

Non-temporal
Performance

Requirement Requirement

Adjudicated
Constraint

Issue

Resolution

trace to

trace to

trace to

trace to
Developed
Model

trace to

trace to

Figure 5-3. Information Model for Requirements

extend

Model

Verifiable

AnalysisTest

InconsistentNot Verifiable Compound Redundant

Poorly
Written

TBD/TBR

by work to be done

Survey Inspection

Original

trace to

Reference
Requirement

point to

by origin

Requirement
131

Assess Available Information
Adjudicated Constraints trace to elements in the Developed Model which extends the
Initial Model received with text.

Figure 5-3., Information Model for Requirements is complex and is more readily
understood from partitions like Figure 5-1., Associations of Available Information and
Figure 5-2., Classification of Text Requirements. However, it summarizes five pages
of written text and is more rigorous than the text.

In a form such as Figure 5-3., Information Model for Requirements, a team of
engineers can walk through the associations one by one to verify that they make sense.
In this form the information is unambiguous, executable and can be used as the basis
for generating a database schema that will represent all of these information associa-
tions. When complex information models like Figure 5-3., Information Model for
Requirements, are created, they can fail to properly capture reality and can need modi-
fication. They are however, unambiguous and can be checked by engineers and with
tools to find and remove such failures. Information models can be used to create a
database schema for information storage.

5.3 A Behavior for Assess Available Information

As we have seen, when a team developing a large complex system receives thousands
of pages of Available Information in the form of text requirements, there is a large
amount of work to be done to assess the information.

• Identify and correct the problems in the requirements

• Classify the kinds of requirements so that they can be properly budgeted and
traced and engineering progress tracked

• Create needed traceability links

Fortunately tools exist, some with hypertext automation, to speed this process. A data-
base with information about tools is developed and maintained on the World Wide
Web by the International Council on Systems Engineering, (INCOSE 1996).

The process for assessing available information can be described as a behavior
with a model.

5.3.1 Decomposition of the Behavior of Core Step 1
Figure 5-4., Functional Flow Block Diagram Decomposition of Core Step 1 provides a
Functional Flow Block Diagram view which decomposes the behavior of Core Step
1., Assess Initial Information. An FFBD is used here, without showing input/output, to
simplify a complex diagram.
132

Assess Available Information

Gather
Heritage

Information

1.1

Gather
User

Information

1.2

Gather Text

Information

1.3

Gather Ops
Concept

Information

1.4

Requirements

And

Gather
Initial

Models

1.25

And

Incorporate
Heritage in

Requirements

1.7

Incorporate

Requirements

1.8

 User Inf in

And

Classify
Problems
& Define

1.12

And

1.
Assess

Available
Information

Plan
Issue

Resolution

1.14

Track
Issue

Resolution

1.15

Resolve

Issues

1.16

Classify
by

Use

1.17

Requirements

And

Define
Requirement
Validation

1.18

Generate

Database

1.19

Requirements
Review

Database

1.20

Requirements Correct
Requirements

Format

1.23

Correct
1.24

Requirements

And

Database

ID

Requirements

1.9

Reference
Incorporate

of Reference

1.10

Requirements

Issues

ID

Changes

1.5

Requirement
Trace to

Documents

1.6

Source ID
Requirements

1.11

Correct
1.27

Modeling
Database

Trace
1.13

Requirements
to Source

And

Generate

Scenarios

1.21

Ops Concept
Review

Scenarios

1.22

Ops Concept And

Analyze
1.26

Models with
core process

Figure 5-4. Functional Flow Block Diagram Decomposition of Core Step 1
133

Assess Available Information
 The FFBD of Figure 5-4., Functional Flow Block Diagram Decomposition of
Core Step 1, contains two major parallel parts. The upper part, functions 1.1 - 1.13,
describes what is done in correcting, classifying, and tracing text requirements. There
are six major sequential groupings of tasks in this upper path.

1. Collect the existing information

2. Combine all collateral information, including change documents which may be
received during the collection period.

3. Classify problems, define issues, and trace to origin

4. Resolve issues

5. Generate and review requirements database and operations concept.

6. Correct any problems in the requirements database.

 The first job to be done is to gather information. If this is the start of a program, then
one gathers the heritage, user, text requirements, and operations concept information.
If this is part way through the program, one gathers the prior context and component
models.

The next job is to incorporate the user and heritage information with the text
requirements and to identify any reference requirements. The requirements from the
reference sources must be obtained and merged with the other requirements informa-
tion.

If requirement changes are received, they are identified and traced to source doc-
uments to establish what is affected by the changes.

With the raw requirements in hand, the next job is to identify what are require-
ments and to separate explanatory statements and boiler plate from the requirements.
As identified requirements emerge, they are classified by source and by work to be
done; and issues are developed. It is convenient at this time to ensure that all require-
ments trace to their source. In the later stages of the development the context and
object models are reviewed and issues raised regarding the models.

 The next job is to plan issue resolution, track that work, resolve the issues, clas-
sify requirements by use (now that issues are resolved), and define the means of vali-
dation.

As this work is done, a database of paper or an electronic database of informa-
tion is developed. The job now is to generate a complete and consistent database and
to review it. This is then followed by correcting any requirements format problems
that were found in review and correcting the database information.

If one is dealing with models at this part of the program life cycle, then there will
be available both context information and operations concept information in the form
of initial models. The lower part of the FFBD of Figure 5-4., Functional Flow Block
134

Assess Available Information
Diagram Decomposition of Core Step 1 describes the steps in assessing the initial
models. First the models are collected. Next they are analyzed with the core technical
process.

If these are executable models they can fully define the system context. They
will represent the excitations of the system and the system responses. These scenarios
provide the stimuli that drive the components responses. It is important that they are
complete and that they are correlated with the validation suite which is developed.
Capturing them as behaviors in executable models is a potent way to specify what the
system or component must do. The scenarios must be reviewed and the database for
modeling scenarios corrected.

The sets of scenarios developed in this first Core Step are vital as inputs to the
succeeding core engineering steps which model what the system does internally.

When the available information has been assessed then core step 1 is complete
for this iteration. The next step in the Core Process are ready to be undertaken. The
next three steps are interdependent and they are carried out concurrently.

5.4 Summary

In the development of large complex systems there is substantial effort and engineer-
ing cost expended in assessing the large requirements documents that are made avail-
able. These efforts and costs can be reduced substantially with modeling. When a
modeling approach is applied, the information is substantially condensed. A page of
modeling is equivalent to five to ten pages of text. Further, the models can be checked
for correctness by engineers and tools, and they can be transformed rigorously into
the notations and views needed by particular engineering disciplines. When models
are used fully, text descriptions are not lost. Instead they are created as data dictionary
items whenever a modeling element is created. This provides for traceability without
having to create traceability for large volumes of text. The links exist within the mod-
els.

In practice it is not a matter of choice of the engineering organization whether to
use text documents only, models only, or text documents with some models. In most
real situations the manner in which requirements are handled is established by the
acquisition process defined by the acquiring organization or by management. The
engineering professionals need to respond efficiently and proactively to any of the sit-
uations.

5.5 Exercises

1. The available information is taken from a problem statement that was written for
software engineering development and is intermediate between a requirements
statement and an operations concept. The available information is for an Auto-
mated Teller Machine System:
135

Assess Available Information
“Design the software [an automated teller machine system] to support a comput-
erized banking network including both human cashiers and automated teller machines
(ATM’s) to be shared by a consortium of banks. Each bank provides its own computer
to maintain its own accounts and processes transactions against them. Cashier stations
are owned by the individual banks and communicate directly with their own bank’s
computers. Human cashiers enter account and transaction data. Automatic teller
machines communicate with a central computer which clears transactions with the
appropriate banks. An automatic teller machine accepts a cash card, interacts with the
user, communicates with the central system to carry out the transaction, dispenses
cash, and prints receipts. The system requires appropriate record keeping and security
systems. The system must handle concurrent access to the same account correctly. The
banks will provide their own software for their own computers; you are to design [the
ATM system] the software for the ATM’s and the network. The cost of the shared sys-
tem will be apportioned to the banks according to the number of bank customers with
a cash card.”

a. Break the paragraph into individual sentences and classify them by the work to
be done.

b. Correct the identified problems for each sentence.

c. Identify any derived requirements or implied requirements that result from b.

d. Attach to each statement that results from c. how it shall be validated.

e. Classify each statement according to its use.

f. Adjudicate any design requirements as reasonable or needing transformation to
one of the other types. Correct any which need transformation.

2. Give three examples of:

a. Original Requirements

b. Reference Requirements

c. Implied Requirements

d. Derived Requirements

3. Provide a text description of the relationship of Design Requirements to Implied
Requirements (see Figure 5-3., Information Model for Requirements on page 131).

4. Develop a narrative requirements statement for a design of a folding table.

5. Apply the process of Figure 5-4., Functional Flow Block Diagram Decomposition
of Core Step 1 on page 133 to the answer for question 2.
136

Assess Available Information
5.6 References

Perry, Tekla S. 1996. The trials and travails of interactive TV. IEEE Spectrum April,
22-28

INCOSE 1996 International Council on Systems Engineering Web Site, http://
usw.interact.net/INCOSE/workgrps/tools/tooltax.html
137

Assess Available Information
138

Define Effectiveness Measures
Define Effectiveness Measures
6.1 What Core Step 2 Is

Core step 2 establishes the criteria, the effectiveness measures, by which alternative
designs and architectures will be judged. It provides the guidance of what is most
important to the developers of structure and behavior models. For criteria that are
matters of preference, it establishes the stakeholder groups and surveys that identify
and establish a set of effectiveness measures. For criteria that can be expressed as
statements of engineering performance, it generates the equations that define them in
engineering terms. It sets up the surveys that are required to prioritize all of the effec-
tiveness measures.

The numerical evaluation of the effectiveness measures is not done in this step,
it is a part of the later Core Step 5, Trade-off which is discussed in “Perform Trade-
Off Analysis” beginning on page 203.

Effectiveness measures are a basic abstraction used by management to analyze
business and formulate business strategy. The are examined in “Interface with Acqui-
sition and Management” beginning on page 307.

6.2 Importance of Effectiveness Measures

Effectiveness Measures are the small subset of the requirements that are so important
that the system will fail if they are not met and will be a hugh success if they are met.
They are the important things the product will do. They incorporate the visionary
goals of management and engineering which may exceed what users and operators
expect and presently can appreciate. They are the criteria used to make the trade-off
decisions of what to build. They drive the system solution. The design of a system is
an ill posed problem that has no solution without a set of criteria to guide choices.
The effectiveness measures correspond to the regularization functions used in optimal
control or in calculus of variations. They are few in number, usually less than a
dozen, even for large complex systems.
139

Define Effectiveness Measures
The effectiveness measures are critically important because they incorporate
what customers, owners, operators, and users want and will use in their decisions to
buy or not buy product. They define the fit of the product to the marketplace. They are
critical because all the stakeholders - users, customers, owners, operators, engineers,
and management, must agree on them or there will be future problems.

If these criteria are not both correct and agreed to, then the system development
can be plagued with costly requirements changes. It may miss its market. The effec-
tiveness measure results are extremely useful in reviews with management and with
customers, users and operators who do not want to know all of the technical engineer-
ing detail but do want to know about these critical system criteria.

 Figure 6-1., Context for Systems Engineering, shows an object structure model
that captures the context for systems engineering, considered as an organization. Only
the design engineering disciplines, suppliers, and manufacturing engineering disci-
plines need and want to receive the engineering detail. The detail they need to receive
is a version of the system detail transformed into the views and notations of the disci-
pline. The product stakeholders and management need information about the system,
especially effectiveness measures, in a form that is useful to them. The product stake-
holders do not need all of the technical data.

 Systems
Engineering

Marketing

Sales

Management Manufacturing

Product Stakeholders -

 Design Engineering Disciplines -
Hardware, Software, Operator,...

Suppliers

Purchasing

users, operators, buyers,
owners, customers

Engineering

Figure 6-1. Context for Systems Engineering
140

Define Effectiveness Measures
The use of effectiveness measures as decision criteria for trade-off gives the
core technical process for engineering complex systems its distinctive behavior.

Trade-off in software engineering is known as optimization and complexity. The
heart of trade-off in software engineering is complexity or space for speed. An O(n)
algorithm executing n operations may run in O(n*2) time, while a less complex algo-
rithm to perform exactly the same function may run in O(nlogn) time. Similarly, soft-
ware can be adjusted to store more intermediate calculations and run faster, or to use
less storage space and run slower. Speed can be traded against the size of the data
storage. These optimizations can and often are performed after code is initially run-
ning. This is the integration phase of software development.

Systems engineering employs effectiveness measures and trade-off in a distinct
and formalized manner which is different than the practice in software engineering.
This difference must be taken into consideration when attempting to apply software
engineering methodologies to systems problems.

6.3 An Industrial Example

When effectiveness measures are first posed they are often phrased in customer and
user terms rather than in engineering equations and quantities. They must become
measurable and transformed into engineering quantities, or they must be posed with
alternatives.

An interesting illustration is the development of the Boeing 777, (Norris 1995).
At the conclusion of the negotiations with United Airlines which placed the launch
order for the 777, a hand written note stated:

“In order to launch on-time a truly great airplane, we have the
responsibility to work together to design, produce, and introduce an
airplane that exceeds the expectations of flight crews, cabin crews,
and maintenance and support teams and ultimately our passengers
and shippers. From day one:

•Best dispatch reliability in history

•Greatest customer appeal in the industry

•User friendly and everything works.”

The Boeing engineering team included engineers from the airlines from day one. The
bulleted measures above had to be transformed into two kinds of measurable goals:

• measurable engineering goals

• preference goals from surveys of customer
141

Define Effectiveness Measures
Reliability is a clear engineering goal and can be quantified. Engineering goals
derived from “greatest customer appeal in industry” would likely include flight range,
passenger comfort, and aircraft availability. They can be quantified by interacting with
the customers and attaining agreement on the numerical values critical to success.

“User friendly to flight crews, cabin crew, passengers, etc.” can also be quanti-
fied, but only by careful survey of the wants and preferences of these groups of peo-
ple. This can be done with real attainable feature alternatives, access to representative
groups, and valid statistical analysis of the results. The findings can then be translated
into engineering alternatives and goals.

 As the engineering solution emerges, the results can be explained in terms of
what will be achieved in dispatch reliability, customer appeal, user friendliness, and
reliability of all parts of the aircraft. This is the information needed and understood by
most of the stakeholders.

6.4 How Effectiveness Measures Drive the Solution

How the effectiveness measures drive the solution is shown with a simple example.
The three functions of Figure 6-2., Behavior of Three Independently Concurrent Func-
tions provide the basis for the example.

Functions A, B, and C are completely independent and have separate and distinct
inputs and outputs. They can be rearranged in any of the possible series parallel com-
binations without affecting the outcome - O1, O2, and O3. If they are done in a
sequence, or two in a sequence with one parallel, the same outputs are produced. A
simple practical example of three such functions is: setting a dinner table, cooking the
dinner, talking with a guest.

1.
Function A.

2.
Function B.

3.
Function C.

And And

O1I1

O2I2

O3I3

Figure 6-2. Behavior of Three Independently Concurrent Functions
142

Define Effectiveness Measures
For this trivial example we assume that there are estimates of how long it takes
to perform each of these tasks, as shown in Figure 6-3., Timeline. Task A takes 1 time
unit, task 2 takes 2 units and task 3 takes 4 units.

We assume that we have only one kind of resource, Object R, with a fixed cost
per unit that can do all three of these functions. We can use several of them in the
solution.

6.4.1 Problem: System 1
• The effectiveness measure is least cost for System 1.

• What is the near optimal solution?

• Answer: One object with the three functions serialized shown in Figure 6-4.,
System 1 built from Object R

time

Task A

Task B

Task C

1 2 3 4

Figure 6-3. Timeline
143

Define Effectiveness Measures

There are six equivalent behaviors to do this as shown in Figure 6-5., Six near
Optimal Behaviors.

Low Cost, System 1

Cost $100
Time 7 units

Function A
Function B
Function C

Cost $100
Time 7 units

Function A
Function B
Function C

Object R

1

Figure 6-4. System 1 built from Object R

1.
Function A.

2.
Function B.

3.
Function C.

1.
Function A.

3.
Function C.

2.
Function B.

2.
Function B.

1.
Function A.

3.
Function C.

2.
Function B.

3.
Function C.

1.
Function A.

3.
Function C.

1.
Function A.

2.
Function B.

3.
Function C.

2.
Function B.

1.
Function A.

Figure 6-5. Six near Optimal Behaviors
144

Define Effectiveness Measures
6.4.2 Problem: System 2
• The effectiveness measure is least time to complete for System 2.

• What is the near optimal solution?

• Answer: There are two solutions:

• System 2.1 Three objects, each performing one function
• System 2.2 Two objects, one performing functions A and B, one perform-

ing function C.
System 2.1 is shown in Figure 6-6., System 2.1 built from Three Object R’s

The behavior of System 2.1 is the concurrent behavior shown in Figure 6-2.,
Behavior of Three Independently Concurrent Functions on page 142, which can use 3
resources or objects to perform it. Three instances of object R are used in three differ-
ent roles. Note also that the behavior does not demand any interfaces among the three
objects used. Interfaces might be necessary for other reasons, but not because of the
behavior. The non-temporal attribute of cost adds going up the aggregation tree. Time
does not add. The time line is the result of the behavior and is obtained by executing
the corporate behavior of System 2.1.

The alternative solution, System 2.2, is a solution to this problem and to a more
restricted one below.

Short Time, System 2.1

Cost $300
Time 4 units

Function A
Function B
Function C

Cost $100
Time 2 units

Function B

Object R, role B

Cost $100
Time 1 unit

Function A

Object R, role A

Cost $100
Time 4 units

Function C

Object R, role C

Figure 6-6. System 2.1 built from Three Object R’s
145

Define Effectiveness Measures
6.4.3 Problem: System 3
• The effectiveness measures are

• least time to complete for System 3.
• lowest cost for System 3.

• What is the near optimal solution?

• Answer: There are two solutions:

• System 3.: Two objects R, one performing functions A and B serialized, the
other performing function C. Because there are two ways to serialize Func-
tions A and B, there are two solutions.

Figure Figure 6-7., System 3 Built from Two Object R’s. shows Object R used in
two roles

The overall completion time for System 3. is the same as for System 2., as shown
by executing the behavior of Figure 6-8., Behavior of System 3. It is less than System
1. The optimal structure found for System 3 is identical to the solution found for Sys-
tem 2.2.

Short Time, System 3

Cost $200
Time 4 units

Function A
Function B
Function C

Cost $100
Time 3 units

Function A

Object R, role AB

Cost $100
Time 4 units

Function C

Object R, role C

Function B

Figure 6-7. System 3 Built from Two Object R’s
146

Define Effectiveness Measures
The cost of System 3. is two-thirds of System 2.1 and twice as great as System
1. The results of the example are summarized in Table 2., System Alternatives &
Effectiveness.

The effectiveness measures drive the solution that is adopted. They guide and
reduce the work of modeling behavior and structure by informing the engineers
which alternatives to explore. The alternatives exist because behavior can be mapped
to the parts in different ways taking advantage of independent concurrency in the
behavior of the system. Numerical evaluation of the effectiveness measures requires
knowledge of both the behavior and structure of alternative system designs. It
requires knowledge of the attributes of the parts of the structure. It requires access to
stakeholder groups who can express their preferences among alternatives.

In even this trivial problem, effectiveness, behavior, and structure were all con-
sidered. The development of these three models is a set of concurrent dependent
activities.

System
Alternatives

Time Cost
Effectiveness

Measures

System 1 7 units $100 cost

System 2.1 4 units $300 time only

System 3 4 units $200 time & cost

Table 2: System Alternatives & Effectiveness

1.
Function A.

2.
Function B.

3.
Function C.

And And

O1I1

O3I3

O2I2

Figure 6-8. Behavior of System 3
147

Define Effectiveness Measures
The effectiveness measures not only drive the solution to the problem, but also
guide the management of the team performing the work. They become a guiding prin-
ciple for prioritizing the focus of the work, for allocating manpower to the tasks, and
for assessing risk (Reugg, Field, and Boldblatt 1993).

6.5 Types of Effectiveness Measures

It is useful to classify effectiveness measures based on the kind of work that must be
done to evaluate them.

 Figure 6-9., Classification of Effectiveness Measures depicts three kinds of
effectiveness measures:

• Those that can be calculated with equations from the attributes of the parts of
the system and the structure of the system - attributes like weight, cost, power,
or reliability

• Those that can be calculated from modeling and analysis - modeling of behav-
ior, simulation of probability of detection, etc.

• Those that can be obtained from survey of the preferences of owners, operators,
and users using their choices among solution alternatives.

6.6 Priorities among Effectiveness Measures

Complex systems are similar to the trivial example above in being driven by only a
few effectiveness measures. However, complex systems involve thousands or more
parts. The relationships between the effectiveness measures and the attributes of indi-
vidual parts span several tiers of decomposition of the system and many linear and
non-linear relationships. Both the budgeting of attribute values to parts and the roll-up
of attribute values to effectiveness measures needs the precision and efficiency of
computer capture and execution with models.

Effectiveness
Measures

Preference
Effectiveness

Measures

Attribute
Effectiveness

Measures

Modeling
Effectiveness

Measures

kinds of

Figure 6-9. Classification of Effectiveness Measures
148

Define Effectiveness Measures
A list of individual effectiveness measures as criteria does not completely estab-
lish the solution to choose. Compare Systems 1. and 2.1 in Table 2. Is the gain of
reduced time from 7 units to 4 units worth the added weight of two Object R’s and
added cost of $50.00? This can be decided in several ways:

• By examining a table such as Table 2 and choosing.

• When the trades are continuous functions rather than a coarse set of choices, it
can be done by finding minima in the functions and then choosing among
them.

• By prioritizing the effectiveness measures into a single cost function by
assigning priorities or weights for each measure. The solution with the lowest
value of cost function is then the system of choice.

Statistically valid systematic methods of assigning such priorities have been devel-
oped. The advantage of the single cost function is that it provides a single number on
which to base the selection of the design to be used. The advantage of examining the
set of individual effectiveness measures and how they vary with alternatives is that
one can see where the sharp maxima and minima occur and where the broader max-
ima and minima occur. It is sometimes prudent to select a somewhat less optimal
design if the tolerances on the attributes of the parts can be larger. This selection is a
selection based on quality/risk and should be quantified with a proper requirement or
effectiveness measure.

 The selection of the effectiveness measures from among all the possible perfor-
mance requirements, and the selection of the weighting factors both require setting
priorities by assessing the opinions of informed individuals. The individuals partici-
pating need to represent all important product stakeholder groups. The nature of the
statistical methods used (Thomas 1983) make it equally easy for individuals of
diverse backgrounds and education to participate.

Two methods recommended for setting priorities for complex systems are the
Analytic Hierarchy Process, AHP, (Saaty 1983), and the Multi-attribute Utility The-
ory, MAU, (Roy and Vincke 1981).

In the AHP process individuals consider the relative importance of the effec-
tiveness measures in pairs, two at a time, until they have exhausted all the pairs. A
scale for assigning importance is provided by the method. These results are summa-
rized in a matrix and the principal eigenvector of the matrix provides the values for
the priorities. If all of the effectiveness measures can be computed analytically, then
these priorities are used directly as weighting factors for the regularization function
that will establish the near optimal design.
149

Define Effectiveness Measures
Some of the effectiveness measures may be of the type that are matters of user
preference. In this case the designs are considered in pairs for each of the effectiveness
measures by the individuals participating. These results are combined with the weight-
ing factors to yield a preference for each design. The method provides a check for con-
sistency and significance of the results.

The AHP and MAU methods provide a rational basis for the selection of a par-
ticular design candidate.

6.7 Information Model for Core Step 2.

The nature and use of effectiveness measures has been discussed above and illustrated
with a simple example. It is useful to provide more rigorous models of the work done
in creating effectiveness measures and of the information used. Figure 6-10., Informa-
tion Model for Create Effectiveness Measures captures associations among the infor-
mation objects. The reasons for the associations in this model are that they are used in
the work that is done. A discussion of the information model proceeds from a descrip-
tion of the work steps to be done. The work steps are shown in Figure 6-11., FFBD
View of Define Effectiveness Measures, Core Step 2. These figures are discussed
together because of their intimate association.
150

Define Effectiveness Measures
Subject
System

Attributes

Subject
System

Component

Object
Interfaces

Structure
operations

Attributes

ranked by
compute

Cost

Effectiveness
Measure

Behavior

have

Design

compute

determine
alternatives

Priorities

Function

establish

selects

Equations

with

are arguments

of equations

have

built

Execution
Engine

executes
behavior

compute

describe
structure

from

Effectiveness
Measure

Effectiveness
Measure

from
Attributes

Effectiveness
Measure

from
Modeling

Effectiveness
Measure

from
Preferences

Priority
Survey

generate

Values

have

Effectiveness
Measure
Survey

generate

Figure 6-10. Information Model for Create Effectiveness Measures

1+

Estimation

Simulation

Measurement

provides

Value Computation
151

Define Effectiveness Measures
All of the Effectiveness Measure identification is done in conjunction with the
major stakeholders: owners, operators, users, management, marketing, customers, etc.
The first set of four steps, Figure 6-11., FFBD View of Define Effectiveness Measures,
Core Step 2, accept all currently available information and identify the stakeholders
who will participate with the engineering team. Sometimes marketing represents
groups of these people. There follows three concurrent paths.

In the top path the team defines the effectiveness measures that are related to the
attributes of the parts and to structure, like cost, weight, and reliability. Equations are
associated with the attributes and have these attributes as their arguments. The associ-
ations are shown on the right side of Figure 6-11., FFBD View of Define Effectiveness
Measures, Core Step 2. The attributes must be captured in the Structure Model, Core
Step 4.

In the middle path the team defines and performs the surveys that generate effec-
tiveness measures related to preferences. An example would be a survey to establish
the seat environment for passengers that would make an aircraft the most appealing in
airline use. The associations are shown in the top center of Figure 6-11., FFBD View
of Define Effectiveness Measures, Core Step 2.

2.4
Identify

Stakeholder
Participants

2.5
Define

Effectiveness
Measures

2.7
Perform

Effectiveness
Measure

2.9
Define

Effectiveness
Measures

2.8
Generate

Effectiveness
Measures

2.6
Evaluate

Equations
Measure

Effectiveness
from

Attributes

from
Modeling

Survey from
Preferences

2.10
Execute

Behavior
System
Subject

2.11
Perform
Priority
Survey

2
Define

Effectiveness
Measures

2.1
Accept
Initial

Information

2.2
Accept

Behavior
Model

2.3
Accept

Structure
Model

And

Figure 6-11. FFBD View of Define Effectiveness Measures, Core Step

And And
152

Define Effectiveness Measures
Figure 6-11., FFBD View of Define Effectiveness Measures, Core Step 2 the
team defines effectiveness measures based on modeling associated with execution of
behavior. This implies that there is work in progress to define Behavior, Core Step 3.
This path is particularly important when the overall success of the behavior is not
known but behavior is understood and probabilities are known or estimated for the
steps in the behavior. Examples are probability of success in detecting a flaw, in
detecting a military threat, in destroying a target, in completing a communication, etc.
These problems often involve communication bandwidths and frequency and size of
communications. They yield to simulation and monte carlo calculations for which
behavior must be known. The left side of the figure shows the associations of an exe-
cution engine (a computer tool or person) with the Subject system and the effective-
ness measures.

The last step in Figure 6-11., FFBD View of Define Effectiveness Measures,
Core Step 2 is to perform the priority survey that establishes priorities for a cost func-
tions. The center part of the figure shows that the effectiveness measures determine
the alternative subject system designs to be considered. It shows that the effectiveness
measures have priorities which are generated by the priority survey. The priorities
establish the cost function that selects among the alternative designs.

The effectiveness measures have a determinative influence on the behavior and
structure developments that establish alternative architectures. They provide the
insight to the engineers to efficiently develop a modest number of likely alternatives
from among the multitude of possible alternatives.

6.8 Summary

The work is done jointly with the stakeholders. It establishes the effectiveness mea-
sures and the equations and surveys to evaluate them. The attributes identified must
be included in the structure model. The defined effectiveness measures guide the
structure and behavior modeling in defining a modest number of important alterna-
tive solutions for the system. This core step provides the mechanism for getting effec-
tiveness measure values from stakeholder preferences, structure and behavior. It
provides the mechanism for generating priorities for the effectiveness measures and a
cost function that picks out the near optimal solution.

The use of trade-off and effectiveness measure criteria which are derived from
the product stakeholders is a distinguishing best practice in the engineering of com-
plex systems. The complexity is handled by the use of powerful abstractions in com-
puter modeling of behavior and structure. Defining product with high value,
competitive performance, low cost, and good fit to the market is a result of trade-off
with effectiveness measure criteria.
153

Define Effectiveness Measures
6.9 Exercises

1. Repeat the analysis of the problem described in Section 6.4, How Effectiveness
Measures Drive the Solution on page 142. Use the same three concurrent functions,
Figure 6-2., Behavior of Three Independently Concurrent Functions on page 142
and the same time line, Figure 6-3., Timeline on page 143. Consider the same com-
binations of effectiveness measures.

a. Find the alternative designs possible when two resources are available as
shown in Figure 6-12., Two Resources.

b. Extend Table 2., System Alternatives & Effectiveness. to include the additional
alternative designs.

2. Identify stakeholders for the following.

a. halogen table lamp

b. farm tractors

c. quality assurance consulting

3. In general, in the U.S., black olives come in cans, spanish (green) olives come in
clear, glass jars. What effectiveness measures might account for this difference?

4. Design a set of effectiveness measures, using the process in Figure 6-11., FFBD
View of Define Effectiveness Measures, Core Step 2 on page 152 for

a. an integrated circuit fabrication plant

b. an internet browser

c. a clock radio

Resources

Object H

Cost $100
Speed 1.0x

Function A
Function B
Function C

Object L

Cost $150
Speed 1.5x

Function A
Function B
Function C

Figure 6-12. Two Resources
154

Define Effectiveness Measures
d. a procedure for financial auditing

5. For each of the effectiveness measures in question 2

a. classify the kind

b. prioritize the measures and state the reason.

6.10 References

Norris, Guy. 1995. Boeing’s seventh wonder. IEEE Spectrum. October 20-23.
Reugg, Richard G., Field, Kevin J., and Boldblatt, Barry. 1993. Design for manufac-

turability/affordability - The F414 story, Defense Manufacturing Conference
1993 San Francisco, CA. Vol II, 97-109.

Roy, B. and Vincke, P. 1981. Multicriterion analysis: Survey and directions, Euro-
pean Jour. Operat. Res. 8, 207

Saaty, Thomas L. 1983. Priority setting in complex problems, IEEE Trans. on Engr.
Management. EM-30: 140-155.

Thomas L. 1983. Priority setting in complex problems, IEEE Trans. on Engr. Man-
agement. EM-30, 140-155.
155

Define Effectiveness Measures
156

Create Behavior Model
Create Behavior Model
7.1 What Core Step 3 Is

Core Step 3 creates the behavior of whatever thing or object the engineer is consider-
ing. If the engineer is defining the context of the system or subsystem, it is necessary
to define the behavior of each external object in the environment that excites the sys-
tem. As the excitations are defined, the responses of the system or subsystem need to
be defined. These excitations and responses are behaviors. They capture in rigorous
and executable form the information which is expressed in text operations concepts
or requirement statements. They first define the intrinsic behavior that the system or
subsystem shall have. This is the behavior as allowed by nature, incorporating the
sequences and alternatives demanded by reality and preserving the concurrencies
allowed.

The intrinsic behavior is often transformed to a design behavior by serializing
concurrencies or pipe-lining sequences for performance reasons.

The design behavior is the emergent behavior of the interacting assembled com-
ponents that constitute the system. It results in the same set of responses to excitations
as the did the intrinsic behavior, but may be faster and less expensive when imple-
mented.

Generally the creation of behavior models occurs concurrently with the defini-
tion of effectiveness measures and with the creation of structure models. The effec-
tiveness measures guide and reduce the work of creating behavior and structure
models by defining what is of greatest value. The structure models provide for effi-
cient choice of the best pieces and parts to use, and they help the engineer keep the
behaviors being created within reasonable reach of the feasible. In this competitive
global market place it is essential to push the system close to its limits, but it is also
vital to stay within feasibility and to do the engineering at low cost.

Behavior models play a particularly important role in the re-engineering of sys-
tems which are poorly documented. In this case it is frequently important to reverse
engineer and synthesize an understandable higher level behavior of the system from
the existing lines of code or from the behaviors of a multitude of individual parts. The
existing emergent behavior of the system must often be preserved in the new system
157

Create Behavior Model
with enhancements. Yet the available detailed documentation of behavior may only
describe the behaviors of individual parts or of lines of code or may not match the
actual system.

7.2 How to Create Behavior Models

Chapter 3, “Basics of Behavior” beginning on page 67, describes the basics of model-
ing behavior. This chapter draws upon those results to define the detailed steps
involved in creating a behavior model. The detailed steps are described in text, are
made explicit with a model, and are illustrated with a simple example.

Figure 7-1., FFBD View of Core Step 3, is a Functional Flow Block Diagram of
an engineer’s behavior in creating a behavior model for the object or thing under con-
sideration.

The first three steps in the engineer’s behavior, 3.1, 3.2, and 3.3, are concurrent
and in general have no established order. The information already developed about
effectiveness measures is accepted and interpreted in step 3.1. For the modeling of a
particular subcomponent some of the effectiveness measures may be unimportant and
others important and requiring interpretation. For example, in the development of a
satellite, designing to minimum weight is an important effectiveness measure. Yet the
physical weight of a custom high speed integrated circuit chip may be unimportant.
However, the power consumption of the kinds of chips used may be very important to

And

3.1
Accept

Effectiveness
Measures

3.2
Accept

Structure
Model

3.3
Accept

Available
Information

3.7
Validate

3.4

3.5
Order

3.6
Define

3.8
Evaluate

Functional
Interfaces

3.9
Output

Behavior

Functions

Input/Output

Behavior

Information

3
Create

Behavior
Model

Define
and Trace
Functions

Figure 7-1. FFBD View of Core Step 3

And
158

Create Behavior Model
satellite weight because of the impact on power storage, solar energy arrays and heat
dissipation. Power consumption is likely associated with chip processing speed and
hence the time for completion of a behavior.

The information developed in prior modeling of structure is accepted in Step 3.2
and used in this modeling of behavior.

All of the applicable available information is accepted and used in Step 3.3.
Often this includes text requirements and an operations concept which describe what
the particular subcomponent must do. The available information may include behav-
ior models developed earlier that are to be used or refined.

The second set of three concurrent steps in Figure 7-1., FFBD View of Core Step
3, 3.4, 3.5, and 3.6, build the behavior needed at this stage of the engineering. Step
3.4 defines the functions that are needed and develops traceability links to text
requirements which are applicable. The definition of the functions may suggest
derived requirements associated with them which require traceability links to the
functions and to parent requirements.

It is possible to do the engineering development using models and a data dictio-
nary rather than with text requirements. Presently this approach is rare in practice.
When the modeling approach is used, the functions will be a decomposition of a func-
tion in a previous behavior model. The text requirements exist as explanations in the
accompanying data dictionary and are automatically linked to functions and parent
requirements as they are developed.

Step 3.5 of Figure 7-1., FFBD View of Core Step 3, orders the functions. Steps
3.4 and 3.5 are not sequential. Defining the functions will involve thinking about their
order, and ordering the functions will result in the discovery of new functions needed
or in the modification of ones already selected. These two steps are concurrent. The
result of completion of these two steps is the information needed for a Functional
Flow Block Diagram view of the behavior. The information can be captured by con-
structing this view with a graphic tool or by creating part of a behavior model.

Step 3.6 of the figure defines the Input/Output items for each function. In I/O
intensive or data intensive systems, the I/O information may be more important, rele-
vant, and available to engineers than the ordering of functions. It may be very impor-
tant to the definition of the functions. The I/O - Function view of behavior, a Data
Flow Diagram, may be of greater interest than a Functional Flow Block Diagram.
This step is concurrent with 3.4 and 3.5 and may cause modification of their results.

When all three definition steps have been completed, the result is an executable
behavior. Step 3.7 is the execution of the behavior, manually by engineers or automat-
ically with a tool. It validates the behavior. The execution will find problems such as
starvation or deadly embrace. By associating time budgets with each function the
execution will generate an overall time line for the behavior. If this style of modeling
159

Create Behavior Model
has been carried out consistently during the development of the tree of parts that con-
stitute the system, the time line for a subcomponent can be studied for its impact on an
overall response thread of the system to an external excitation. In many developments
there is no deterministic time of completion for the functions but probabilities of com-
pletion can be estimated for them. In such a case it is often possible to execute the
behavior as a monte carlo calculation to generate a probability for overall success.
This is useful for detection types of systems like medical imaging, flaw detection,
radar, and sonar systems. It is useful for systems with statistically known excitations
like communication systems and management information systems.

Step 3.8 evaluates the functional interfaces. It is particularly useful in situations
in which the magnitude of input/output is known and the rate of generation and con-
sumption is known for functions. In these situations the flow at interfaces can be
established once the behavior has been demonstrated to be error free in step 3.7. Wait
times due to lack of input are established. Accumulation of output is determined and
can be correlated with the amount of storage capacity available or required.

The final step, 3.9, generates all the behavior information needed for the engi-
neering information base in the form required. It is important to remember that engi-
neering is an art of finding a near optimal solution with a minimum of effort. If some
of the steps in Figure 7-1., FFBD View of Core Step 3 on page 158 can be skipped in a
particular problem without negative impact, then that is done.

 If it is necessary to cycle from any later step to any earlier step, then that is done.
There are too many possible backward loops to show them in the figure. The back-
ward loops were all accounted for in the Perform Change Control process step No. 2,
as shown in Figure 4-5., Model for the System Engineering Process on page 106. This
step provides a complete process for the discovery of any issue and its resolution by
any alteration of the progression of work, whether the issue involves the personal
work of only one engineer, or involves the entire engineering team and revision of
contract with a customer. Details for Perform Change Control are described in “Dis-
covery and the Change Control Process” beginning on page 328.

7.3 Example of Behavior Development - Bottling Wine

In order to discuss a system behavior, elements external to the system must first be
developed. These external elements form the context for the system. As suggested
before, the context can be stated in several ways:

• Executable Requirements, captured in models

• Requirements expressed in text

• An Operations Concept described in narrative prose.

In addition, Effectiveness Measures are developed in parallel and guide efficient
development of behavior and structure models.
160

Create Behavior Model
For the purposes of this example, bottling wine, we will assume the existence of
context information without debating its technical merit or how it came to exist. Fig-
ure 7-2., Context Diagram for Bottling Wine, shows the context using an information
model. This is the structure information which is the input to step 3.2 of Figure 7-1.,
FFBD View of Core Step 3 on page 158.

Very often a large complex problem can be broken into weakly interacting parts
by examining the context of the system. It is then useful to have separate teams
develop the weakly interacting parts and to carefully combine the results and make
them coherent. To simplify this example only the interactions between the Wine-
maker and the Wine Bottling System will be considered in this chapter. The other
interactions in the context are suggested as an exercise.

 The context can be described with text as a set of requirements.

7.3.1 External System Behavior

Name of the external system(s) causing an excitation of the system

• Winemaker

The excitation behavior

• The Winemaker shall order bottling of a specific number of bottle of wine.

• The Winemaker shall specify the barrels of wine to be used.

• The Winemaker shall specify the time for completion of bottling.

Wine Bottling

Bottle wine

Bottling

Supply items

Storage

Accept wine

Winemaker

Make wine

System

stores Get supplies

Supplies

supplies

order bottling

Order bottling
Specify source
Specify time

& provide wine

Get wine
bottles

available

Facility

Figure 7-2. Context Diagram for Bottling Wine
161

Create Behavior Model
• The Winemaker shall make the barrels of wine available

Inputs to the system

• Location and identity of the stored wine from Winemaker

• Location of other necessary supplies from Bottling Supplies

• Time of completion from Winemaker

• Number of bottles to be filled from Winemaker

• Start bottling command from Winemaker

Functional Requirements of System

• The system shall fill bottles with wine

• The system shall cork bottles of wine

• The system shall label bottles of wine

Outputs from the System

• Bottles of Wine to Storage

• Request for Wine Barrels to Winemaker

• Request for Supplies to Bottling Supplies

Name of the external system(s) receiving the Outputs from the System

• Bottled Wine Storage

• Bottling Supplies

• Winemaker

7.3.2 Temporal Performance Requirements

Time duration or probabilities associated with the excitation scenario

• The excitation system shall provide a stimulus at uncertain intervals with the
highest demand of 100 bottles per day.

7.3.3 Non-temporal Performance Requirements
• Number of bottles to be produced

• The system shall produce bottles of wine at a rate up to 100 bottles of wine per
day.

• Material cost per bottle $1.00 or less
162

Create Behavior Model
• Labor cost per bottle $1.00 or less

• Investment cost of $400.00 or less

Pre-determined design

• none

Reference requirements that refer to documents and models that apply to the system

• none

7.3.4 Operations Concept for System Context
The Winemaker decides that it is time to bottle the wine in one of the barrels. She
tells the Wine Bottling System of this decision and provides information about which
wine is to be bottled, the number of bottles, and when it is to be completed. The sys-
tem uses supplies from Bottling Supplies to bottle the wine and prepare the bottles for
sale or consumption. The prepared bottles are placed in a wine rack ready to be taken
to storage in the Storage Facility.

7.3.5 Behavior of the Winemaker
The static context model of Figure 7-2., Context Diagram for Bottling Wine provides
only partial information about the excitations of the system. It shows only the func-
tions carried out by the Winemaker. The behavior of the winemaker for excitation of
the Wine Bottling System is completely defined in Figure 7-3., Behavior of the Wine-
maker.

And

Order
bottling

Specify
source

Specify

Make wine

time

Available

Winemaker
Behavior

W.3

W.2

W.1

W.4

W

And

Start
Number
of bottles

Location
& I.D. of

wine

Time for
bottling

Stored
barrels

Figure 7-3. Behavior of the Winemaker

Request
wine
163

Create Behavior Model
The four functions listed in the object picture for Winemaker in Figure 7-2.,
Context Diagram for Bottling Wine, are all captured in Figure 7-3., Behavior of the
Winemaker, with their ordering and input/outputs.

Note that as presented here the text descriptions and the models are somewhat
redundant. The combination is most efficient when the text is created in a data dictio-
nary as an explanation for each element in the models.

7.3.6 Effectiveness Measures
1. Bottle wine at minimum cost.

2. Complete the bottling as quickly as possible.

3. Ensure there is no foreign matter in the bottles of wine.

4. Bottle only good wine.

The effectiveness measures capture a small subset of requirements that are vital for
success in the marketplace for competitive cost, schedule, and quality reasons.

7.3.7 Intrinsic Behavior
Having been given the context diagram and other text requirements, or a text opera-
tions concept, we are now ready to begin developing a model of the behavior for our
system. For most systems the engineers have preconceived design ideas which may,
even unconsciously, affect their decisions in modeling the behavior. Especially at
these early stages of development care must be taken not to introduce artificial limita-
tions. The behavior of the system will be developed in stages in the example in the
way it might emerge in real work. What happens in real work is highly interactive
with discoveries and return to earlier work. It is not neat.

Top Level Behavior
Consider the problem of bottling wine, the work of bottling it when the wine and other
needed items are available but stored.

The first set of tasks includes getting the wine, the corks, etc., to the area, per-
haps a kitchen, where the bottling will be done. This is Intrinsic Behavior in that it
must be done by any bottling system whether it is transporting the items to the feeders
in a bottling plant or carrying items from a home basement to a kitchen. Thus, we
begin the design by breaking the behavior into two functions taking place serially.

• Gather Supplies, and

• Produce the Bottles

These are shown in Figure Figure 7-4., Top Level FFBD for Bottling Wine, using the
Functional Flow Block Diagram notation.
164

Create Behavior Model

Expanding Gathering Supplies
There are several subtasks within Gather Supplies. In particular we find the wine, get
the bottles, get the corks, get the cleaning supplies, and get the labels. A critical ques-
tion to ask is: Can these tasks be done in any order, or is there an imposed sequence?
The answer in this case is that they can be done in any order. This is represented in
Figure 7-5., Gathering Supplies For Bottling Wine, as a concurrency in that Func-
tional Flow Block Diagram. The arrows, once again, represent sequence. The and
shows that the following steps may occur in parallel at the same time.

This is the concept of intrinsic behavior. Although this set of steps need not be
performed in parallel, they can be done in parallel and so they are modeled that way.

.

Produce the

Bottles

Gather

Supplies

Figure 7-4. Top Level FFBD for Bottling Wine

1.0 2.0

And

Get Wine
Bottles

Get Cleaning
Materials

Get

Get

Get
Labels

Corks

WineGather
Supplies

1.0

1.4

1.5

1.3

1.2

1.1

Figure 7-5. Gathering Supplies For Bottling Wine
165

Create Behavior Model
Expanding Produce the Bottles
As with Gather Supplies there are several subtasks involved to Produce the Bottles.
The bottles must be filled, corked, labeled and cleaned. In addition to this basic set of
functions, a few other functions are also necessary to have a robust behavior for bot-
tling wine. Our Effectiveness Measures stated: ‘Ensure there is no foreign matter in
the bottles of wine’. We derive from this a requirement that the bottles be clean prior
to being filled.

Thus we introduce several functions for cleaning the bottle and testing to deter-
mine if it is clean enough to use. Figure 7-6., Fill the Bottles for Bottling Wine, shows
the FFBD for this portion of the behavior. An additional semantic constructs was
needed to describe what happens to unclean bottles. The function Look At Bottle is a
branch point, or a selection point, for the behavior with conditions for each of the
alternative paths that follow. If the bottle is clean, the filling process follows. If the
bottle is dirty it is discarded.

.

If one reverses the steps of clean, fill, and cork the bottle, one has a corked,
clean, empty bottle. These steps need to be done in this sequence. Nature and reality
do not allow them to be reversed. This is the concept of intrinsic Behavior. It captures
what nature allows in its most general form.

Putting it All Together
Figure 7-7., Completed Functional Flow Block Diagram, Bottling Wine, now shows
the completed FFBD for the intrinsic behavior of bottling wine. The actual Design
Behavior of the system depends upon the available resource, on the Effectiveness
Measures that have been adopted for optimization purposes, and on the number of bot-
tles to be produced.

Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

OK

not OK

Figure 7-6. Fill the Bottles for Bottling Wine
166

Create Behavior Model
.

7.3.8 Emergent Behavior
While Figure 7-7., Completed Functional Flow Block Diagram, Bottling Wine, pre-
sented a final version of the intrinsic behavior we have not yet finished with the
behavior modeling. We now have to consider what the desired emergent behavior is.
Factors which will alter the behavior that do not involve the structure of the final sys-
tem should be considered. Considerations of this sort tend to limit the overall general-
ity of the intrinsic behavior.

Deriving the appropriate emergent behavior from the intrinsic behavior is one of
the key creative portions of systems engineering. No amount of formal methods and
approach can overcome bad decision making. Neither can they replace experience
and creativity in engineering. We stress as best practice the use of executable models
to help evaluate the decisions before a large commitment is made to producing the
parts of the system. With that as general guidance, we push on to crafting the emer-
gent behavior.

The effectiveness measures in the available information have not yet been used
in the example. Much of the impact of the effectiveness measures will be on the map-
ping from behavior to structure. They also play an important role in developing the
emergent behavior. Focus on the first two effectiveness measures.

1. Bottle wine at minimum cost.

2. Complete the bottling as quickly as possible.

3. Ensure there is no foreign matter in the bottles of wine.

And Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

OK

not OK

Get Wine
Bottles

Get Clean
Materials

Get

Get

Get
Labels

Corks

Wine

Figure 7-7. Completed Functional Flow Block Diagram, Bottling Wine
167

Create Behavior Model
4. Bottle only good wine.

and look at the intrinsic behavior as shown in Figure 7-6., Fill the Bottles for Bottling
Wine. Minimum cost may not be quick. Some modifications can be made to the
behavior at this point to balance these opposite pulls. In particular we look at the deci-
sion making involved with inspecting the bottle. The intrinsic behavior takes into
account only the need to have a clean bottle into which to put the wine. The bottle is
thrown away if it is not clean after one washing. This may lead to the disposal of many
bottles which might become clean if they were washed a second time. We can modify
the behavior to reduce the cost of disposing of bottles with little impact on completion
time. The proposed change in shown in Figure 7-8., Modified Functional Flow Block
Diagram, Bottling Wine.

.

In the justification for making this change we used some rather loose reasoning that
one effectiveness measure would be improved and another would be minimally
affected. Choices of this sort are the heart of systems design and greatly impact the
merit of the total system design. In Figure 7-8., Modified Functional Flow Block Dia-
gram, Bottling Wine, the bottles are washed a maximum of three times, but two times
or some other number of times might be optimal. It is in Core Step 5, Perform Trade-
off Analysis, that these trade-off decisions are fully defined and performed quantita-
tively. The trade-off analysis cannot be carried out until decisions have been made
about how the system will be built, what objects will be used, the attributes of those
objects, and what alternative structures are to be considered during Core Step 4, Cre-
ate Structure Model.

Figure 7-8. Modified Functional Flow Block Diagram, Bottling Wine

And Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

OK

not OK & bottle

Get Wine
Bottles

Get Clean
Materials

Get

Get

Get
Labels

Corks

Wine

not OK &
bottle washed < 3 times

washed 3 times
168

Create Behavior Model
Though this behavior may now seem complete it is still defective in one impor-
tant aspect which demonstrates the importance of engineering experience, creativity,
and wisdom. It is related to Effectiveness Measure 4. “Bottle only good wine” which
has not yet been taken into account. The defect in the behavior is that one tastes the
wine before doing the tasks to ensure that one bottles only good wine. It is left as an
exercise to add the necessary functions, branches, conditions, and iterations to incor-
porate “Taste the Wine.”

7.3.9 Completing the Behavior - Adding Inputs and Outputs
What has just been modeled is but one view of behavior, the functions and control. In
order to have a semantically complete, and therefore executable, model the inputs and
outputs must be added. Figure Figure 7-9., Top Level behavior for Bottling Wine,
shows the function flow block diagram of Figure 7-4., Top Level FFBD for Bottling
Wine on page 165, augmented with input/output for each of the top functions.

The inputs and outputs for the next level Functional Flow Block Diagram can
also be added to produce the second level behavior of Figure 7-10., Second Level
Behavior for Bottling Wine. In that figure, second level input/output has been added
and the I/O items Stored Supplies, which come from the external system Stored Sup-
plies, and Gathered Supplies have been decomposed into their second level parts.

Produce the

Bottles

Gather

Supplies

Figure 7-9. Top Level behavior for Bottling Wine

1.0 2.0
Start

Bottled
wine

Gathered

Completion
time

Supplies
Stored

Supplies

Request
wine
169

Create Behavior Model
This now provides enough information, expressed formally, to start at the begin-
ning and simulate the system’s operation. To do this we employe the models for exter-
nal systems in this systems context, in this case the behavior model for the Winemaker
and the behavior model for Stored Supplies. The external systems provide the neces-
sary stimulus to our model to fully define its synchronization with the external world
and to observe our system’s internal behavior as responses. The models are explicit
and leave no ambiguity as to what the system is to do.

7.3.10 Views of Behavior
When the inputs/outputs, functions, and the ordering of functions by control opera-
tions are all included in the model, behavior is fully modeled and executable. There is,
however, a drawback to this view. The full models of behavior contain a great deal of
information and can be hard to read. To overcome this, two useful simpler views can
be used:

• A view of function and its ordering by control (the functional flow block dia-
gram we have been using, is such a view) and

• A view of function and input/output such as a data flow diagram.

The various diagraming techniques for the elements of behavior have been developed
over many years starting as early as the 1950s when the FFBD was first introduced.
Such diagrams convey information that is difficult to express in a textual language
with the same level of completeness. With any successful diagraming techniques,
semantic information must be readily apparent to engineers developing and reviewing
system designs.

Get Wine
Bottles

Get Clean
Materials

Get

Get

Get
Labels

Corks

Wine

And Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

OK

2 times not

not OK &
cleaned 3 times

stored

stored
bottles

barrels

stored
labels

stored
corks

ready
bottle

ready
mtl’s

waste
mtl’s

bottled
wine

waste
bottle

full
bottle

corked
bottle

dirty
bottle

cleaned
bottle

OK

clean
bottle

dirty
bottle ready

cork
ready
label

ready
wine

stored
mtl’s

Number

Location

of bottles

& ID of
wine

request
wine

Figure 7-10. Second Level Behavior for Bottling Wine
170

Create Behavior Model
This function and input/output view of behavior has been captured in several
different diagrams which use different syntax. To name a few;

• Data Flow Diagram

• N Squared Chart

• IDEF0 Diagram

• Requirement allocation sheets, in text

Figure 7-11., Data Flow Diagram for Bottling Wine is a Data Flow Diagram
produced by removing all of the control symbols from the behavior.

.

This data flow diagram with the control information removed can be rearranged
to make the information it represents more readable. Figure 7-11., Data Flow Dia-
gram for Bottling Wine, shows the rearranged version which serves as an example of
the importance of layout in any of these diagramming techniques. Although the
semantic content is the same between the two versions of the data flow diagram, the
understandability of the content for humans is dramatically improved in the second
diagram.

Get Wine
Bottles

Get Clean
Materials

Get

Get

Get
Labels

Corks

Wine

Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

stored

stored
bottles

barrel

stored
labels

stored
corks

ready
bottle

ready
mtl’s

waste
mtl’s

bottled
wine

waste
bottle

full
bottle

corked
bottle

dirty
bottle

cleaned
bottle

clean
bottle

dirty
bottle ready

cork
ready
label

ready
wine

stored
mtl’s

Number Location
of bottles & ID of

wine

request
wine

Figure 7-11. Data Flow Diagram for Bottling Wine
171

Create Behavior Model

This view of behavior captures all of the input/output relationships with func-
tions. It does not carry all of the information to describe whether functions participate
in concurrency, simple sequencing, or alternative path branching. It does, however,
contain enough information to give insight concerning the control information just as
the function and control view provides some insights to the data flow considerations.

A closer look at the data flow diagram for bottling wine reveals a limitation imposed
by the functional flow block diagram. The limitation that our FFBD requires all of the
gathering supplies activities to be completed prior to beginning any of the bottle prep-
aration and filling tasks. One look at the data flow diagram, especially the reformatted
version, shows that this is clearly not necessary. Only two of the gathering supplies
tasks, Get Wine Bottles and Get Cleaning Materials need to be completed before the

Figure 7-12. Reformatted Data Flow Diagram for Bottling Wine

Get Wine
Bottles

Get Clean
Materials

Get

Get

Get
LabelsCorks

Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

stored

stored
bottles

barrel

stored
labels

stored
corks

ready
bottle

ready
mtl’s

waste
mtl’s

bottled
wine

waste
bottle

full
bottle

corked
bottle

dirty
bottle

cleaned
bottle

clean
bottle

dirty
bottle

ready
cork

ready
label

ready
wine

stored
mtl’s

Wine

request
wine
172

Create Behavior Model
first of the bottle preparation tasks can begin. Figure 7-13., Revised Functional Flow
Block Diagram, shows the impact of these changes on the original FFBD in Figure 7-
7., Completed Functional Flow Block Diagram, Bottling Wine on page 167. It is
worthwhile, therefore, to consider what decisions we made that led to an unnecessary
limitation.

A quick review shows that nearly the first decision made caused the problem.
Figure 7-4., Top Level FFBD for Bottling Wine on page 165 divided the behavior into
two elements: Gather Supplies and Produce the Bottles. This first division created the
unnecessary limitation, yet at the time it appeared to be a reasonable expression of
intrinsic behavior. Which FFBD is more desirable to use, Figure 7-8., Modified Func-
tional Flow Block Diagram, Bottling Wine on page 168 or Figure 7-13., Revised
Functional Flow Block Diagram? That question cannot be answered until the behav-
ior information is combined with structural information that defines how the work
will be done. There may be other variants of behavior that will be found to be impor-
tant as structure alternatives are considered. This reinforces the need to perform Core
Steps 2, 3, and 4 concurrently. It is a major strength of the modeling techniques that
they detect and raise such issues early in the development and provide means for
quickly resolving the issues quantitatively to find a near optimal solution.

And Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

OK

not OK & washed

Get Wine
Bottles

Get Clean
Materials

Get

Get

Get
Labels

Corks

Wine

not OK &
bottle washed < 3 times

 3 times

Figure 7-13. Revised Functional Flow Block Dia-
173

Create Behavior Model
7.3.11 Behavior, Structure, and Effectiveness Measures
For this part of the example, assume that the dominating Effectiveness Measure is to
bottle the wine as quickly as possible. If only one person is to perform this task manu-
ally, then the work of gathering items, Figure 7-5., Gathering Supplies For Bottling
Wine on page 165, must be serialized.

There are five factorial or 120 ways to do this. One person using any of these
120 serialized sequences is a design, a mapping of the behavior onto a particular set of
objects. This transformation of the Intrinsic Behavior into a Design Behavior does not
alter the response of the system. Such transformations occur in the development of
large complex systems.

Downstream from the initial serialization of a concurrency an engineer working
on a single component may have no idea that the sequence on which he is working
was once a concurrency. If additional resource becomes available for incorporation
into the design, it may be valuable to recover the Intrinsic Behavior and allowed con-
currencies. It is important to record and keep the information of the Intrinsic Behavior,
the Design Behavior and the issues and reasons for the transformations in going to
design.

Intrinsic sequences may also be transformed to optimize Effectiveness Mea-
sures. If three people are available to bottle wine, then the sequential tasks may be
done concurrently, by setting up a pipe-line process.,

1. clean

2. look

3. fill

4. cork, and

5. label

Exactly how the pipeline is done depends on the length of time required for each
task, on the number of people or amount of resource available, and on the Effective-
ness Measures applied. In this case a reasonable architecture with three people is to
have two people clean bottles because they must be filled and rinsed repeatedly, and
one person fill, cork and label bottles. In complex systems quantitative trade-off is
performed to make such decisions.

Note that a best practice of systems engineering work is to follow the steps of the
core systems engineering process. One creates effectiveness measures, one creates an
intrinsic behavior, and one examines sets of objects to perform the behavior. Which
set of objects to use and how the behavior is apportioned among them is a matter of
trade-off against a set of criteria. The result is an accepted architecture which encapsu-
lates the Design Behavior which is a transformation of the Intrinsic Behavior that
meets needs and is allowed by reality
174

Create Behavior Model
If the Effectiveness Measures were altered, then the entire solution could
change even with the same resource availability of three people. Consider the follow-
ing altered Effectiveness Measures:

1. Have the best party possible

2. Always have ongoing work to avoid criticism

3. Bottle no more than 3 bottles of wine to serve as the Annual Memorial Wine
Bottles

4. Drink the rest

A potential solution is to have Tasting taking place in parallel with every other step, a
modification of the Intrinsic Behavior. Allocate no more than one person to work on
bottling at any time. The wine bottling example has to this point illustrated the rele-
vance of:

• intrinsic behavior imposed by nature

• design behavior, transforms of the intrinsic behavior to optimize the design

• emergent behavior, the behavior exhibited by the integrated system. It should
be the design behavior.

• concurrency in considering behavior, structure and effectiveness measures

• the semantic structures (functions, input/output, control) needed for behavior

7.4 Scenarios and Response Threads as Paths through Behavior

It is often desirable, at any tier of development, to partition the creation of the behav-
ior modeling to simplify the problem and distribute it among teams. The excitation
and the response behaviors of complex systems often encompass many alternate par-
allel paths. One of the powerful techniques for simplification and distribution is to
consider one-by-one the paths through the excitation behavior of the external sys-
tems. Each of these excitation paths is called a scenario. For each scenario there is
one or more response path from the system, depending upon the conditions at the
time of the excitation. Each of these response paths is called a response thread. The
analysis of systems by the use of excitation scenarios and response threads is a pow-
erful way to do the modeling described here and to partition the work among teams. It
is also important to realize that the scenarios and response threads must merge into
coherent and error free behaviors which contain branch points that define all of the
alternative paths. When scenarios and responses are defined independently by sepa-
rate groups of people, they can easily be defined such that they are incompatible.

A second technique for partitioning the modeling of systems with complex
behavior first develops the “normal” behavior of the system - the behavior when
everything goes right. After this has been done, the engineer considers each step in
the behavior and considers how the behavior should be altered for safety, for reliabil-
175

Create Behavior Model
ity, and for all possible things that might go wrong (Carson 1995). Common examples
are recovery and rollback of computer based systems after a system crash, vending
machines that handle coins and slugs, and automobiles with safety belts and air bags.

7.5 Behavior, Context and Traceability, an Information Model

This chapter has described how to model behavior, how behavior is related to context,
and how traceability is maintained between text requirements and model elements. A
simple example has illustrated the concepts. Figure 7-14., Information Model for Text
Requirements, Behavior, and Context, is a complex information model that summa-
rizes these many pages of text on a single page. A complex model such as this has the
disadvantage of carrying such a large amount of detail that it requires careful study for
comprehension. It has the advantage of enabling the reader to see all of the informa-
tion on one page and to focus carefully on the detail in limited regions of the model
while seeing how that region relates to the whole. The figure combines parts of earlier
figures. The basic structure of behavior is shown without shading. The classification
of requirements by how they are used is shown with dark shading Associations among
context elements are shown with intermediate shading.

7.5.1 Explanation of the Context Region
Examine the Object element in the top right part of Figure 7-14., Information Model
for Text Requirements, Behavior, and Context. Every object is built from many other
objects. This is shown by the recursive aggregation. Every object has several different
roles it may play in the modeling of a complex system. The role of the object depends
upon how the engineers view the object based on what they are developing for the sys-
tem. For example, an automobile engine is the Subject System to the engine design
team. The engine is a Component to the automobile design team, it is an External Sys-
tem to the transmission design team. It is an Output from the engine manufacturing
facility, an Input to the automobile assembly plant, and an Input and Output to the
just-in-time logistics system that delivers parts to the assembly plant. A single object
has all of these roles for different engineering teams.
176

Create Behavior Model
connects to

Structure
operations

define behavior
hierarchy

trace to

trace to

trace to

trace to

limit choice
of I/O

Function
generate &
consume

ordered by

Control
operations

respond
according
to

connects

excite
according
to

interconnection defines
subject system context,
interfaces

composed

Behavior

classified by use

to

allocated to Components

Interface

Response
threads

Attributes

External
behavior

External
Systems

Subject
System

Attributes

Internal
behavior

Adjudicated
constraint

Design

Issue

Resolution

Text
Requirement

Text
operations

concept

Text
Information

Scenarios

has Object
Role

Object

of

define
subject

structure

in Structure Model

defined by allocation of
behavior to components

Input/Output

Interface
requirement

Functional
requirement

Temporal
performance
requirement

Non-temporal
performance
requirement

trace to budget to

limit choice of functions

Behavior
Information

Context
Information

Component
Input/
Output

kinds of roles

Figure 7-14. Information Model for Text Require-
ments, Behavior, and Context

1+

1+

1+
respond to

1+

1+

1+1+

1+
1+

1+ 1+

1+1+

< trace to

2+ 2, all

2+
177

Create Behavior Model
Every Subject System is interconnected with one or more External Systems
which excite it and to which it responds. The interconnection is called an interface and
is often sufficiently important that it is considered to be an object, called Interface, and
is fully documented. Both kinds of systems have attributes, and have a behavior.

7.5.2 Explanation of the Behavior Region
The Behavior object is shown in the center of Figure 7-14., Information Model for
Text Requirements, Behavior, and Context. As explained in earlier chapters, it is built
from Input/Output and from Function. The Functions are ordered by Control Opera-
tions.

To simplify this already complex diagram, associations that define the Control
Operations and that classify the Input/Output are not shown. Structure Operations
define the behavior hierarchy through a hierarchy of Functions and of Input/Output
These are the same Structure Operations that are used to define the Subject System
structure. Each External System has or encapsulates an External Behavior. That
behavior can be decomposed into a set of many Scenarios, each of which is an alterna-
tive path through the External Behavior. Similarly, each Subject System has or encap-
sulates an Internal Behavior. That behavior can be decomposed into a set of many
Response Threads, each of which is an alternative path through the Internal Behavior
of the Subject System. For every Scenario there is one or more Response Threads. For
each Response Thread there is one or more Scenarios that excite it.

7.5.3 Explanation of Traceability and Budgeting

Functional Requirement Traceability
The Functional Requirements trace directly to the Functions which implement them.

Temporal Performance Requirement Budgeting
The Temporal Performance Requirements are time durations which must be met by
entire response threads. When the Temporal Performance Requirements are created,
there is generally no knowledge of how many Functions and what Functions will
implement the response. Consequently the Temporal Performance Requirements are
usually a single time duration number or probability distribution that applies to an
entire response thread. Because a number of functions will implement a Response
Thread, the single number or probability distribution must be broken or budgeted into
increments which are assigned to the individual functions.

How this budgeting is done depends on the details of the behavior, which Func-
tions are in parallel or in series. It can be done in advance of defining the structure, but
it must be revisited and likely redone for each of the alternative design structures
when they have been established and the functions mapped to the structures. It is most
efficiently done when behavior creation and alternative structure creation proceed
178

Create Behavior Model
concurrently. A particular Function might be assigned to a person, a machine, a slow
computer, or a fast computer. The time to execute that Function will depend upon the
choice made. Usually it is the overall response time of the Response Thread which is
important and required rather than the time to complete any one function. It is very
useful to create traceability links among Scenarios, Response Threads and Temporal
Performance Requirements when the latter are received in text form, (White 1994).
This occurs naturally when the system is developed with models and the Scenarios
and Response Threads are executed to produce time lines based on the budgets
assigned to the Functions

Non-temporal Performance Requirement Traceability
These requirements trace to the attributes of objects in the Structure Model, they do
not trace to elements in the Behavior Model.

Design and Traceability
Often engineers receive design in the documents for requirements. This may happen
because the system is constrained by other existing systems or by the realities of
logistics, interoperability or suppliers. Often, however, the imposed design is inap-
propriate and needs to be rewritten as a requirement. Because of this, these text state-
ments are referred to as Design rather than as design requirements. It is important to
raise an Issue with the source of the Design statements, and develop a Resolution to
the Issue. That Resolution will throw the Design statement away, will transform it
into one of the other types of requirements, or will keep the Design statement as an
Adjudicated Constraint that dictates what will be used. It may dictate that a particular
Input/Output, Function, or Object be used. The traceability links to Objects appear in
the Information Models for Structure in the next chapter.

Interface Requirements
The Interface Requirements trace directly to the Interfaces. They are critically impor-
tant to ensure that components which are developed independently will integrate
smoothly and to provide for interoperability.

7.6 Pitfalls in Developing Scenarios and Threads

When many engineers are developing the scenarios and response threads for the sys-
tem and its context, it is very important that the scenarios and threads be aggregated
into coherent behaviors or obtained by decomposing coherent behaviors. It is very
easy to create sets of scenarios and response threads which cannot be combined
coherently into a behavior and which will lead to integration problems when the sys-
tem is built and assembled. There are techniques being used, like Use Case develop-
ment (Jacobson et al. 1992), which do not guarantee the compatibility of the
scenarios and response threads. Neither do they support trade-off by keeping behav-
ior and structure separate, but rather they inherently mix the two. They are efficient
179

Create Behavior Model
and useful in working through a single design alternative, but must be redeveloped if
the structure is changed by adding or deleting objects, or by combining or subdividing
objects. They are much more useful in software engineering where trade-off is not a
major issue than in systems engineering for which trade-off is a distinguishing best
practice. When an executable behavior is allocated to a design, the use cases can be
generated automatically by executing the behavior and tracking the individual paths.

7.7 Summary

How to create behavior models has been explained as a process and with a simple
example. The important associations among the modeling elements have been
described with information models and in text.

The examples have shown that the Definition of Effectiveness Measures, the
Creation of Behavior Models, and the Creation of Structure Models are closely
related. Discoveries and new insights in any one of these activities has major implica-
tions for the others. They are concurrent activities. The Effectiveness Measures guide
the engineers in efficiently creating the intrinsic Behavior Model that will meet mar-
ketplace needs.

The next chapter shows how the Effectiveness Measures guide the engineers in
efficiently creating the Structure Models that record the selection of alternative com-
ponents and structures which constitute design and architecture. It shows how the
Intrinsic Behavior is transformed to a Design Behavior to match alternative designs.

7.8 Exercises

1. Create Behavior Models at the top level for the Bottling Supplies and Storage Facil-
ity objects in Figure 7-2., Context Diagram for Bottling Wine on page 161.

2. Link the two models above to the top level models for Winemaker, Figure 7-3.,
Behavior of the Winemaker on page 163, and for Wine Bottling System, Figure 7-
13., Revised Functional Flow Block Diagram on page 173. Add any behavior ele-
ments needed. You will find it necessary to decide whether the Wine Bottling Sys-
tem makes requests which were not modeled in the book.

3. Create a parts list for the Input/Outputs of Wine Bottling System, see Figure 7-10.,
Second Level Behavior for Bottling Wine on page 170 and Figure 7-11., Data Flow
Diagram for Bottling Wine on page 171. Consider in particular Stored Supplies and
Gathered Supplies.

4. Consider all of the changes found necessary to add to the Top Level behavior of
Wine Bottling System. Propagate any changes needed into the second level behav-
ior of Wine Bottling System, Figure 7-13., Revised Functional Flow Block Dia-
gram on page 173.

5. Introduce the necessary functions, branches, and conditions to add “Taste the
180

Create Behavior Model
Wine” to Figure 7-13., Revised Functional Flow Block Diagram on page 173.

a. Use the process in Figure 7-1., FFBD View of Core Step 3 on page 158 to cre-
ate a behavior model for the context level of an automobile.

b. Create a behavior model for an engine

c. Compare the models developed in questions a and b. What changes are neces-
sary to make the engine fit at a lower tier within the automobile.

6. Does the behavior shown in Figure 7-13., Revised Functional Flow Block Diagram
on page 173 adapt to an assembly line? Describe how it does or why it does not.

7.9 References

Carson, Ronald S. 1995. A set theory model for anomaly handling in system require-
ments analysis. Fifth Annual International Symposium of the National Council
on Systems Engineering 1: 515-522.

Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. 1992. Object-oriented
software engineering. Workingham, England: Addison Wesley, p. viii.

White, Stephanie. 1994. Traceability for complex systems engineering. Fourth
Annual International Symposium of the National Council on Systems Engineer-
ing 1: 49-55.
181

Create Behavior Model
182

Create Structure Model
Create Structure Model
8.1 What Core Step 4 Is

 Core Step 4 is the work done by engineers to create models of how things are built
from parts, both physical and logical, and what parts to use. Professionals in different
disciplines may prefer to call these models design models, object models, information
models or architecture models. The choice of particular names is difficult because
any single concept is often named with a different word by the workers in different
engineering disciplines, and the naming is important to the workers in each field.

With the advent and popularity of object-oriented software methodologies, the
software engineering world is using concepts of abstraction of things (objects) and
the encapsulation of behavior by objects, that have been practiced in mechanical,
electrical, and other engineering professions for many years. It is critically important
that the systems engineer be able to communicate rigorously with all of the engineer-
ing disciplines by transforming the systems information into the views, representa-
tions, notations and names understood by each discipline. This chapter focuses on
several aspects of structure modeling:

• A Behavior Model for the process of Core Step 4

• An example of selecting parts and creating a Structure Model

• An Information Model for Core Step 4

• How architecture and design are generated by the repeated core steps of sys-
tems engineering technical work

• How architecture is related to effectiveness measures and reusable components

• How design is simplified by architecture and reusable components

8.2 Creating Structure Models

Chapter 2 describes the basics of modeling structure. This chapter draws upon those
results to define the detailed steps involved in creating a structure model. The detailed
steps are described in text, are made explicit with a model, and are illustrated with a
simple example.
183

Create Structure Model
Figure 15., FFBD View of Core Step 4, is a Functional Flow Block Diagram of
an engineer’s behavior in creating a structure model for the object or thing under con-
sideration.

The first three steps in the engineer’s behavior, 4.1, 4.2, and 4.3, are concurrent and in
general have no established order. The information already developed and being
developed concurrently about effectiveness measures is accepted and interpreted in
step 4.1. For the modeling of a particular subcomponent some of the effectiveness
measures may be unimportant and others important and requiring interpretation.

The information developed in prior and ongoing modeling of behavior is
accepted in Step 4.2 and used in this modeling of structure.The behavior information
may describe the intrinsic behavior of an object as dictated by reality. It may be useful
to transform this behavior as the structure modeling proceeds.

All of the applicable available information is accepted and used in Step 4.3.
Often this includes text requirements and an operations concept which describe what
the particular subcomponent must do. The available information may include adjudi-
cated constraints that have been resolved with the originator of the requirements. The
adjudicated constraints dictates or limit the choice of which objects to use.

The second set of three concurrent steps in Figure 15., FFBD View of Core Step
4, build the structures needed at this stage of the engineering.

4.1
Accept

Effectiveness
Measures

4.2
Accept

Behavior
Model

4.3
Accept

Available
Information

4.7
Execute

4.4

4.5
Define

4.6
Allocate

4.8
Evaluate
System

Interfaces

4.9
Output

Alternative

Attributes

Functions

4
Create

Structure
Model

Define
Objects

System
Behavior

Designs or
Architectures

Figure 15. FFBD View of Core Step 4

And And
184

Create Structure Model
Step 4.4 selects the objects that will be used from what is available in house,
from supplier offerings, and from catalogues or libraries of parts. Usually there are
several different sets of objects that might be used with different advantages for the
different sets. To consider all of the possibilities is very expensive in engineering
resources. The alternatives are efficiently pruned to a moderate number by consider-
ing the Effectiveness Measures. When lowest possible cost is an Effectiveness Mea-
sure, for example, many expensive object choices can be rejected with little analysis.
Several structure alternatives may need to be carried forward to Trade-off Analysis.
The choices under consideration can be expressed directly in the modeling using
Classification to define the potential alternatives. This ability is very useful for later
reuse of components and for very high levels of process automation with tools.

Step 4.5 of defines the attributes of the objects.

Steps 4.4 and 4.5 are not sequential. Defining the attributes will involve think-
ing about a number of objects and about the Effectiveness Measures. For example,
in the development of a satellite, designing to minimum weight is an important effec-
tiveness measure. Yet the physical weight of a custom high speed integrated circuit
chip may be unimportant. However, the power consumption of the kinds of chips
used may be very important to satellite weight because of the impact on power stor-
age, solar energy arrays and heat dissipation. The pertinent attributes are derived from
the Effectiveness Measures and from the Non-temporal Performance Requirements
many of which are expressed as equations with arguments. The attributes are the
arguments of those equations. An attribute which does not affect effectiveness or per-
formance is not needed. Every attribute that affects performance or effectiveness
must be included for relevant objects.

Step 4.6 allocates functions (called methods in object-oriented software) to the
objects. Often for physical objects the assignment of functions to objects is obvious
and inflexible. A garbage disposal in the design of the kitchen is there to grind up gar-
bage. However, some physical objects and especially people and computers are
extremely flexible in what they can do. This does require that the people be trained
and that the computers consist of both the hardware and software required for opera-
tion. Step 4.6 is concurrent with step 4.4 which identifies objects.

The behavior desired and the corresponding functions may be known before the
objects are selected. The process of encapsulating functions in the objects often leads
to discoveries that change the objects being used. Some of the most valuable of these
discoveries occur during context analysis. They unexpectedly map behavior and
objects out of the system and into the environment or move some object and its
behavior from the environment into the system. They can result in major shifts in
product performance and competitiveness. As the functions are assigned to the
objects, interconnections among objects will be established.
185

Create Structure Model
When all three steps have been completed, the result is a set of alternative struc-
tures with an embedded and executable design behavior. The design behavior may be
a transformation of the intrinsic behavior.

Step 4.7 is the execution of the structure of the designs, manually by engineers or
automatically with a tool. It validates the design behavior. The execution will find
problems such as deadlock or race conditions. It is at this point that time budgets can
be assigned to each function with assurance that the time estimates are consistent with
the properties of the object. The execution will generate an overall time line for the
designs. If this style of modeling has been carried out consistently during the develop-
ment of the tree of parts that constitute the system, the time line for a subcomponent
can be studied for its impact on an overall response thread of the system to an external
excitation. In many developments there is no deterministic time of completion for the
functions, but probabilities of completion can be estimated for them. In such a case it
is often possible to execute the behavior as a monte carlo calculation to generate a
probability for overall success.

Step 4.8 uses the execution of behavior to evaluate the system interfaces both
external and internal.This establishes the consistency of design with interface require-
ments. It is particularly useful in situations in which the magnitude of input/output is
known and the rate of generation and consumption is known for functions. In these sit-
uations the flow at interfaces can be established once the design behavior has been
demonstrated to be error free in step 4.7. Wait times due to lack of input are estab-
lished. Accumulation of output and storage of input are determined and can be corre-
lated with the amount of storage capacity available or required.

The final step, 4.9, generates all the structure information needed for the engi-
neering information base in the form required.

8.3 Example of Structure Development - Bottling Wine

Substantial information about the Bottling Wine System has been developed in Chap-
ters 6 and 7 and in the exercises. The Effectiveness Measures, Requirements, Context,
and Behavior have been described.

8.3.1 Requirements Review

Effectiveness Measures
1. Bottle wine at minimum cost.

2. Complete the bottling as quickly as possible.

3. Ensure there is no foreign matter in the bottles of wine.

4. Bottle only good wine.
186

Create Structure Model
Non-temporal Performance Requirements
1. Number of bottles to be produced

2. The system shall produce bottles of wine at a rate up to 100 bottles of wine per
day.

3. Material cost per bottle $1.00 or less

4. Labor cost per bottle $1.00 or less

5. Investment cost of $400.00 or less

8.3.2 The First Parts Selection, Define Objects
The top level selection among things to use for the Wine Bottling System is the
choice between a manual system and a fully automated system as shown in Figure
16., Top Level Selection among Objects.

 Such a selection can be made only if the properties, attributes, of the objects are
known, Step 4.5, and can be compared with requirements. When the attributes are
closely related to one or more of the requirements and when the differences make the
choice clear (this case) then the choice can be made in Core Step 4. This efficiently
prunes the total amount of engineering work to be done. Often, however, there are
hundreds of parts involved and the relationships between requirements and attribute
values are complex. In this case a full trade-off needs to be made, Core Step 5, to be
described in the next chapter.

Bottling System

Investment Cost
Bottling Rate
Material Cost

Bottle Wine

Operating Cost

Smallest Automated

Investment Cost $300k
Bottling Rate 3000 /day
Material Cost

Bottle Wine
Operating Cost

Bottling System
Manual

Investment Cost $400
Bottling Rate 100 /day
Material Cost

Bottle Wine
Operating Cost

Bottling System

Figure 16. Top Level Selection among Objects
187

Create Structure Model
It is non-temporal requirement 3. above that is compared to the properties of a
manual versus automated system. The need is for only 100 bottles per day which can
be met with the manual system. The investment required for the manual system is sub-
stantially less, so it is chosen. Information about the smallest automated system comes
from suppliers of such systems. Other intermediate situations can exist, such as a
requirement for bottling 1500 or 700 bottles per day, which require more detailed
engineering analysis.

8.3.3 The First Parts List or Aggregation
It is necessary to determine all of the parts that will make up the Manual Wine Bot-
tling System. Often many of these objects have been identified or considered during
the ongoing development of behavior, and those results can add to the efficiency and
completeness of this step. Figure 17., First Parts List for Manual Wine Bottling Sys-
tem shows such a list.

Although better alternatives may be found, this list is adequate for this example.
Investment cost is budgeted at $400. The parts in Figure 17., First Parts List for Man-
ual Wine Bottling System, are:

• One or more people, an appropriate number requires further analysis

• A Dedicated Kitchen which is assumed to be available at no additional cost

Figure 17. First Parts List for Manual Wine Bottling System

Manual

Investment Cost $400
Bottling Rate 100 /day
Material Cost

Bottle Wine

Operating Cost

Bottling System

People Dedicated
Kitchen

Bottle
Wash Cork

Inserter
Label

Machine
Wine

Injector

1+ 1+ 1+ 1+ 1+

Equipment
188

Create Structure Model
• Bottle wash equipment

• One or more Wash Injector that force hot water and low suds detergent into
bottle

• One or more Powered Brush to scrub the bottle
• One or more Rinse Injector to force rinse water into bottle

• One or more manual Cork Inserter to force cork into bottle

• One or more Label Moistener to wet the label, a damp sponge on a dish

• One or more Labeling Fixture to hold bottle and help position Label

• One or more Wine Injector to pressurize the wine barrel and force wine into
bottle

It is necessary to budget the investment cost to the parts in the figure as design
targets, to find actual investment costs for them, and to sum the actual costs for com-
parison with the investment requirement. This calculation cannot be performed until
the number of parts is found by trying different alternatives.

8.3.4 Allocate Functions
To find the number of parts to use, we allocate the wine bottling functions to different
numbers of people. The FFBD view of intrinsic behavior of the Wine Bottling System
is repeated from Chapter 7. in Figure 18., Modified Functional Flow Block Diagram,
Bottling Wine for use in this analysis.

Time estimates are needed for one person to do each of the tasks in the figure.
These times can be summed to see if the desired bottling rate of 100 bottles per day
can be met.

And Label
Bottle

Fill
Bottle

CorkClean Look at
Bottle BottleBottle

Dispose of
Bottle

OK

not OK & bottle

Get Wine
Bottles

Get Clean
Materials

Get

Get

Get
Labels

Corks

Wine

not OK &
bottle washed < 3 times

washed 3 times

Figure 18. Modified Functional Flow Block Diagram, Bottling Wine
189

Create Structure Model
The best values for times or for attributes of objects are obtained by measure-
ment of the activity or object. When this is not possible, simulation gives the next best
values. When that is not possible estimates are made based on related experience.
Actual measurements should be made as early as possible in the development cycle to
confirm budgets and estimates. Note that all of the times above would be different if
automated equipment were to be used.

Time Estimates for a Manual Bottling System
• Get wine barrel and prepare it - 30 min

• Get Wine Bottles - 30 minutes

• Get Cleaning Materials - 10 minutes

• Get Corks - 5 minutes

• Get Labels - 5 minutes

• Clean Bottle - 3 minute (filling with wash solution, brushing, and rinsing)

• Look at Bottle - 1/4 minute

• Fill Bottle - 1 minute

• Cork Bottle - 0.5minutes

• Label bottle - 0.5 minute

Case 1. Allocation to One Person
If the functions in Figure 18., Modified Functional Flow Block Diagram, Bottling
Wine, are allocated to one person, then the five concurrent tasks that comprise Gather
Materials must be serialized and there are five factorial ways to do this all of which
take the same total time. The choice among these alternatives is not important to the
system concerns except for one important consideration.

Adding up the time estimates above for serialized tasks, Gather Supplies will
take 1 hour and 20 minutes. What else does the person have to do in an eight hour
day? Eat lunch, 30 minutes. Two work breaks of 10 minutes each. Clean up the
kitchen at the end of the day of work. Note that these times were not included in the
intrinsic behavior, and for a good reason. They are specific to people doing the work
and are not required by an automated system. For this design solution they must be
considered because they impact the work accomplished and the operating cost.

This is an example of discovery during the creation of structure that impacts cre-
ation of behavior. The time for clean up at the end of the day is estimated at 30 min-
utes. Gathering supplies, lunch, two breaks and clean up take 2 hours and 40 minutes,
leaving 5 hours and 20 minutes for bottling wine. Cleaning, filling, corking, and label-
ing one bottle takes 5.25 minutes. One person must perform this in series. One person
can produce only 61 bottles per day. This design is rejected as being not feasible.
190

Create Structure Model
Case 2. Allocation to Three People
If the tasks for bottling wine are allocated to three people, there are a number of ways
to make the assignment, one of which is shown in Figure 19., Allocation to Three
People.

The design also captures decisions as to how many pieces of equipment are made
available.

Figure 19. Allocation to Three People

Get Wine

Burdened Salary

Get Wine

Person

Clean Bottle
Look at Bottle
Dispose of Bottle
Clean up

Get Bottles

Burdened Salary

Get Bottles

Person

Clean Bottle
Look at Bottle
Dispose of Bottle
Clean up

Get other

Burdened Salary

Get Wine

Supplies Person

Clean Bottle
Get Corks
Get Labels
Get Cleaning
 Materials
Fill Bottle
Cork Bottle
Label Bottle

Roles

Clean Up

People Dedicated
Kitchen

Bottle
Wash

Cork
Inserter

Label
Machine

Wine
Injector

3 1 1 1 1

have

Manual

Investment Cost $400
Bottling Rate 100 /day
Material Cost

Bottle Wine

Operating Cost

Bottling System

Equipment
191

Create Structure Model
Because we have the Intrinsic Behavior and time budgets or estimates for each
step, we can manually execute the behavior for this assignment. This execution can be
done automatically with an appropriate design capture tool. The top level task Gather
Materials is done by the three people in parallel.

• Person #1 takes 30 minutes to get wine

• Person #2 takes 30 minutes to get the bottles

• Person # 3 takes 20 minutes to get the corks and labels

• The elapsed time for the task is 30 minutes

Clean up at the end of the day is shared by all three so that it takes 10 minutes. They
take two 10 minute breaks and a 30 minute lunch at the same time. These activities
take 90 minutes and leave 6 hours and 30 minutes for bottling wine. Cleaning and
looking at the bottles is now done by two people at the same time so that the time per
bottle is reduced from 3.25 minutes to 1.63 minutes. Filling, corking, and labeling the
bottles takes 2 minutes so that the total time per bottle is 3.63 minutes. The three peo-
ple can bottle 107 bottles per day on this basis using only one set of equipment. This
means that several pieces of Bottle Wash Equipment must be shared by two people.
Further modeling will show that this is readily done if they synchronize their activi-
ties. Such synchronized parallel resources are frequent solutions to system problems.
An explicit model of this transformation of behavior is left as an exercise.

The Simplest Allocation, Case 3
A major problem in Case 2 is that one of the persons must periodically wait for others
to complete their tasks. This shows up directly in automatically generated time lines as
wait periods. There are simpler and better feasible solutions than Case 2. If only two
people are applied and each person does all of the functions on the same equipment
the throughput is better than the two previous cases. This solution is left as an exer-
cise.

Allocation in the Context of the Problem, Case 4
Very often the most important alternative allocations of functions to objects is done in
the context of the problem. The critical question is: are there any functions that have
been assigned to the Wine Bottling System that could be better done by one of the
External Systems in the context. Sometimes imposed constraints prevent such alloca-
tion changes. In every case it is valuable to think creatively about the issue.

Cleaning the bottles takes appreciable time because they must be soaped,
scrubbed and rinsed. Some may not be clean after one cleaning. If clean bottles are
obtained from Bottling Supplies the cleaning step can be totally eliminated. The bot-
tles need to be stored to stay clean with a provision to return to the supplier any that do
not pass an inspection for cleanliness. In this case one person can produce about 160
192

Create Structure Model
bottles per day, two people 375 bottles, and three people 584 bottles. The cost of pur-
chasing clean bottles and of keeping them clean in storage, as well as the storage
itself, should be considered.

8.3.5 Interfaces Among People
Where interfaces occur and what happens at the interfaces depends upon how the
functions are allocated among the objects.

In Case. 1 there are no interfaces among people. In Cases 3. and 4. the people do
not interact directly, but their activities must be synchronized because they share the
same equipment for performing the bottling. When tasks are performed by people,
they can be trained to synchronize their work using visual and voice cues. This is not
the case for computers and machines which require a resource with its own behavior
to ensure synchronization. The synchronization can be based on broadcast timing as
in the case of a coxswain calling the stroke for a crew team. It can be based on succes-
sive release of shared facilities as in this example. It can be based on quickly servic-
ing demand as the demand occurs as in the case of several elevators serving the
occupants of a building.

In Case 2. there is a synchronization between two of the people and an interface
between each of them and the third person who is filling, corking, and labeling bot-
tles.

8.4 Information Model for Structure

The information model for structure is very similar to the information model for
behavior illustrated in Chapter 7. The decomposition of Behavior into Input/Output
and Function ordered by Control Operations has been deleted to simplify a complex
diagram. Two structure items have been added: Attributes which are a part of every
object description and Component Interfaces which exist whenever objects are built
from other objects. Both information models capture associations with context and
with text requirements. In Figure 20., Information Model for Text Requirements,
Structure, and Context, the added structure items are shown shaded dark for ease of
finding them in the diagram.
193

Create Structure Model
connects to

Structure
operations

define behavior
hierarchy

trace to

trace to

trace to

trace to

respond
according
to

connects

excite
according
to

interconnection defines
subject system context,
interfaces

composed

Behavior

classified by use

to

Interface

Response
threads

Attributes

External
behavior

External
Systems

Subject
System

Attributes

Internal
behavior

Adjudicated
constraint

Design

Issue

Resolution

Text
Requirement

Text
operations

concept

Scenarios

has Object
Role

Object

of

define
subject

structure

defined by allocation of
behavior to components

Interface
requirement

Functional
requirement

Temporal
performance
requirement

Non-temporal
performance
requirement

trace to budget to

Component

Input/
Output

Figure 20. Information Model for Text Requirements, Structure, and Context

1+

1+
1+

respond to

1+

1+

1+1+

1+
1+

1+

 trace to

2+

Component
Interface

1+

defined by allocation
allocated to

Attributes

budget to

associated
through
allocation
of functions
to Components

have trace to

2+
194

Create Structure Model
The information item Component has been moved to the middle right side of the
Figure. Component remains one of the roles which any object may take. A Subject
System is built from two or more Components. Each Component may in turn be
assembled from two or more Components. Behavior is allocated to the Components
and shown in the example in this chapter. The Functional Requirements are associ-
ated with the Components because Functions have been allocated to the Components
and the Functions trace to the Functional Requirements. For any component one can
look up the Functions it encapsulates. One can trace from these Functions to the
Functional Requirements they satisfy. One of the strong features of the modeling
described here is that it enables one to reallocate Functions among Components and
automatically maintain the traceability.

Temporal Performance Requirements budget to the Functions encapsulated in
the Components. These budgets must be reexamined whenever the allocation to
Components is altered because different things have different capabilities in their
speed of executing the same Function. The Components have Attributes and the Non-
temporal Performance Requirements like cost, weight, reliability, power consump-
tion, memory size, etc. budget to the Attributes in accord with an appropriate aggre-
gation equation.

When Design is found in the Text Requirements, an Issue is raised with the orig-
inator of the Design and a Resolution is reached. One of the possible outcomes of that
resolution is an Adjudicated Constraint which predetermines what components shall
be used. Another outcome of the Resolution is that the Design was inappropriate and
is re-expressed as a Text Requirement. In that case the Resolution traces to Text
Requirement.

8.5 Architecture and Design

The descriptions above show a repeated process for development of design or archi-
tecture, but do not indicate the conditions, circumstances, for developing architecture
versus design. System designs produce a near optimal solution for a particular system
problem. Architectures produce a set of rules or constraints that limit design choices
but lead to near optimal designs for a whole family of system problems. Architectures
define the invariant properties across a family of products; the aspects of design
which will be the same for all member of the family. If one is building a grade school
or a home for the elderly, specific and detailed designs (blueprints) are required for
each building. Because both types of buildings need to provide safety and fast access
to the outdoors in an emergency like a fire, they may both be built to an architecture
that dictates one floor construction with access to the outdoors from every classroom
or patient room. Architectures provide constraints to structure and behavior that are
near optimal for a whole class of problems. Architectures deal with the relationships
among classes of things and classes of behavior. Mainframe computers and client-
server computer systems are two architectures for computer systems.
195

Create Structure Model
The same core technical systems engineering technical process is applied to
model the many stages of complex system design or system architecture. What
changes in developing architecture rather than design is not the process but what the
process is applied to, (Oliver 1995)

Application of the core process in this fashion produces the requirements and
designs for the parts tree for the system. The core process generates the parts tree, the
interconnection information, behaviors (functional requirements), performance
requirements, the response information needed for test and validation and a build plan
for each node of the parts tree. The things, components, objects in the parts tree would
be described as object instances by a software engineer. They are particular things
selected because their property (attribute) values and their behaviors result in a near
optimal design solution as established by trade-off.

It is important to realize that the design space is very large, and that finding a
near optimal solution is complex. The algorithmic complexity of the problem has been
shown to be NP-Complete, (Chapman and Rosenblit 1995). This means that there is
no known efficient algorithm for finding an optimal solution. As the problem size
increases, the number of steps needed and the time required to solve the problem algo-
rithmically may increase exponentially.

Engineers solve such complex problems by restricting the components or objects
to be considered to a limited set which are either available from suppliers or which can
be designed and built at acceptable cost and risk. They further simplify the problem by
restricting the manner in which the components or objects behave and are intercon-
nected. The description of these behavioral and structural restrictions is what we call
an architecture. Architectures describe the kinds of components or objects to be used
and how the kinds of components or objects are interconnected.

Applied to Generates

Business using product
(concept analysis)

Business design & value of
product segments

Product
(system analysis & design)

Product design & sub-
system requirements

Subsystems
(subsystem analysis &
design)

Subsystem design, sub-
subsystem requirements

Table 3: Application of Core Process for Design
196

Create Structure Model
Note the words “kind of” in the last sentence. An architecture may typically call
for interconnection by bus structures or by point-to-point wiring. There are many
instances of busses and of point-to-point wiring. The word “bus” as used here is a
class name. It is a generalization of more specific bus classes such as PCI-bus or
VME-bus. Architectures can usefully be described with classes and class relation-
ships. Designs become particularizations of the architecture.

Table 3 on page 196 describes design, but does not illuminate how architectures
are developed. Both architectures and reusable components or object classes are the
result of Domain Analysis, (Oliver 1995). What differs between design development
and architecture development is what the core process is applied to.

Domain analysis is the process of analyzing the application of a product to a
collection of businesses. It establishes the value of the product and its major segments
to the businesses. It results in a modification of the businesses, a new architecture for
them with the product in place. It establishes that all of the product is valuable to the
businesses or that particular segments of the product are of benefit to them all. If only
particular segments of the product are of value across the businesses, it will be impor-
tant to make the major product subsystems match the valuable product segments. One
can then produce and deliver to each business the product segments of value to that
business at minimum production cost. The structure of a good architectures is driven
from an analysis of value to a collection of businesses or buyers.

Examples of this are both common and plentiful. If one wants to buy a car
(class) and has selected a particular brand and model (subclass of car) one can still
select a six cylinder engine (subclass of engine) from the available kinds of engine
(class) depending upon the performance or the economy that is desired by a user. A
good architecture for automobiles gives the buyers choice in automobile performance
and operating cost because that choice has value to the buyer for the buyer’s use or
business. Though this use of “class” and “instance” may appear to be a trivial renam-
ing of common ideas, it is not trivial but rather an important distinction between the
concepts of class and instance, and aggregation and classification which are blurred

Applied to Generates

Collection of businesses
using product or product
segments
(domain analysis)

Business designs & com-
mon product or product
segments of high value
across businesses or time

Common products or seg-
ments (architecture analy-
sis & design)

Common product architec-
ture and reusable products
or segments/ components

Table 4: Application of Core Process for Architecture
197

Create Structure Model
or absent in much engineering work. By using these concepts and abstractions rigor-
ously, both the system models and the descriptions of the system engineering process
can be made rigorous. If rigorous, they can be automated and executed by computer. If
rigorous, then information can be transmitted by systems engineers to the other engi-
neering disciplines without error and ambiguity.

8.6 Architecture, Applications, Effectiveness Measures and Reuse

When architectures are evolved from market experience or developed from effective
domain analysis, they endure for an appreciable time. Over time the architectures will
change. Many businesses have remained locked to a formerly effective architecture
and have suffered severe business contraction by not moving to appropriate new archi-
tectures in their product as rapidly as competition. In the computer world main frames,
multi-tasking operating systems, mini computers, and client server systems serve as
examples. It is useful to list major factors that drive architecture and its change:

1. The general behavior required by a domain of application

2. The effectiveness measures

3. The kinds of objects available for the application domain; the available classes
for architecture.

Pyle, et. al., (Pyle et al. 1993) have developed a useful taxonomy for real time sys-
tems that classifies applications according to the general behaviors that are required.
Five primary features with binary values define 32 primary classes of applications.

The effectiveness measures drive the architecture solution. If availability is a
high priority effectiveness measure, and if the hardware components have individual
failure rates too high to meet the availability, then a redundant architecture with soft-
ware to detect failure and provide recovery will be necessary. This effectiveness mea-
sure will have to be prioritized against others like cost and weight.

The effectiveness measures also change over time. In early phases of the intro-
duction of medical X-ray Computerized Tomography imaging equipment, the product
architecture was driven by performance (image quality and dose to patient), through-
put, and field service. Hospitals with such a machine were at state-of-the-art. As CT
machines became standard equipment in hospitals, architectures meeting acceptable
performance and low cost became important. In latter phases of the market where
sales were saturating, field service and availability dominate and automated remote
machine diagnostics impacts the architecture.

Over time there are major changes in the available components from which to
synthesize systems. In the case of X-Ray CT systems these changes overlapped the
changes in effectiveness measures. Computer hardware shifted from mini-computers
to micro-computers. New bus options became available and software could be distrib-
uted.
198

Create Structure Model
Application of the systems engineering technical process provides for modeling
of all of these factors and trade-off among the options.

8.6.1 Design Simplification with Architecture
Design work is made efficient by using the architectural models and a limited set of
component choices to prune the design solution space, to shorten the design process,
and to produce similar and consistent designs over several product developments and
releases. For a feasible design all of the requirements must be met in addition to the
effectiveness measures. For a near optimal design the specific objects chosen to
include in the design must result in near optimal values for the effectiveness mea-
sures.

The critically important factors for developing the design are:

1. The architecture to be used

2. The specific emergent behavior required by the specific application.

3. The effectiveness measures for the specific application at a particular time in
the market evolution

4. The kinds of objects available for the specific application; the available classes
for design. They are limited by the state of technology and change over time
with technical advancement.

8.7 Summary

The process for creating structure models has been described as a behavior and illus-
trated with an example. It proceeds concurrently with the definition of effectiveness
measures and the creation of behavior models. Alternative mappings of the desired
emergent behavior onto alternative sets of components generates alternative designs
and architectures.

The number of possible designs and architectures, the solution space, is very
large. The general problem is NP complete. For efficient engineering it is important
to prune down the number of choices to be considered without loosing the best alter-
natives. Effectiveness measures help guide this pruning during the work. The applica-
tion of established architectures prunes the work.

Architectures are developed with the same technical systems engineering pro-
cess that applies to design. In developing architecture the process is applied to a
domain - to a collection of businesses and the product and product segments that have
value across the businesses. The same process is used to create designs, but it is
applied to a specific application - a specific business and the product that has value to
that business.
199

Create Structure Model
The three concurrent Core Steps: Define Effectiveness Measures, Create Behav-
ior Model, and Create Structure Model together result in design or architecture alter-
natives. Quantitative trade-off is used to select among these alternatives. Trade-off is
the subject of the next chapter.

8.8 Exercise

1. Work through Case 3., from Section 8.3.4, Allocate Functions on page 189. Is it as
productive as the use of three people as assigned in Case 2?

2. Consider the rewashing of bottles that are not clean after the first pass. Create
appropriate attributes for the object bottle. How many attributes are needed?
Assume a set of numbers for the attributes and estimate the impact on productivity
of rewashing bottles. Estimate the cost of rewashing versus the savings in bottles.

3. Create a design behavior for Case 2. Allocation to Three People. Include the syn-
chronization of the two people cleaning and inspecting bottles. Draw a time line for
each of the persons.

4. Modify Figure 7-2., Context Diagram for Bottling Wine on page 161 and Figure
17., First Parts List for Manual Wine Bottling System on page 188 to define Case 4.
which allocates cleaning the bottles into the External Systems the Context.

5. Develop a structure model for a system for baking cookies. Use a recipe from a
cookbook as the behavior model.

a. decide what the boundaries (context) of the system will be.

b. develop objects for the system

c. allocate the behavior to the objects

d. develop attributes for the objects

6. Consider a caveperson throwing rocks to kill an animal and a missile defense sys-
tem. Develop a structure description to represent both of these systems.

7. Describe the relationship of functional requirements to behavior. See Figure 20.,
Information Model for Text Requirements, Structure, and Context on page 194.

8. Give three examples of product lines that have experienced stable architectures for
10 or more years.

9. Give three examples of businesses that failed because they did not adapt their archi-
tectures.
200

Create Structure Model
8.9 References

Chapman, William L. and Rozenblit, Jerzy. 1995.Complexity of the system design
problem. 1995 International Symposium and Workshop on Systems Engineering
of Computer Based Systems. Tucson, Arizona. 51-57. IEEE#95TH8053

Oliver, David W. 1995. Systems engineering & software engineering, contrasts and
synergies, Fifth Annual International Symposium National Council on Systems
Engineering St. Louis, MO. Vol. I, 701-708.

Pyle, Ian, Hruschka, Peter, Lissandre, Michael, and Jackson, Ken. 1993. Real Time
Systems, Chichester: John Wiley & Sons
201

Create Structure Model
202

Perform Trade-Off Analysis
Perform Trade-Off Analysis
9.1 What Core Step 5 Is

 Core Step 5 is the work done by engineers to choose among the alternative designs or
architectures that emerge from the three preceding modeling steps. It is the effort that
establishes that a design meets both the functional and performance requirements and
is feasible. It is the work that selects from among the several possible feasible designs
or architectures the one most nearly optimal for the marketplace.

The output from trade-off is the selected design or architecture that will be
implemented. Architecture and design exist at every tier of the system parts tree. A
useful high value product can impact and alter the architecture and design of the busi-
ness that incorporates it. An architecture and design also exist for the system, its sub-
systems, sub-sub-systems, etc. The architectures and designs for different parts may
be radically different. The choices among designs and architectures for each part of
the system are based on the impact of that part on the system performance and effec-
tiveness, not on part performance and effectiveness. Values for the important
attributes of the parts must be known to calculate impact of the part upon the system.
This chapter focuses on several aspects of trade-off:

• A Behavior Model for the process of Core Step 5

• Complete identification and specification of attributes of objects

• Performance calculated from the attributes of objects or obtained from survey

• Physical measurement, simulation, and estimation to get attribute values

• Calculation of performance of each alternative

• Calculation of effectiveness for each alternative

• The trade-off decision

• An information model for trade-off

• A discussion of tools and automation of the process
203

Perform Trade-Off Analysis
9.2 Trade-off

The FFBD that refines Step 5, Perform Trade-off Analysis, is shown in Figure 9-1.,
FFBD View of Core Step 5. The inputs to this step from earlier steps have been
described. They provide a complete executable description of the design or architec-
ture alternatives. They define all of the performance requirements and effectiveness
measures, the defining equations, and the attributes needed to evaluate the equations.
What is missing are the values of the attributes. Both the values of the attributes and
the variances in the values are needed. Information is accepted in steps 5.1 through
5.3. In step 5.4, one or more of the alternatives is selected and then evaluated in steps
5.5 through 5.11.

.

9.2.1 Values of Attributes
The values of the attributes are obtained by measurement, physical simulation, and
estimation. As a project evolves, the level of detail increases, and hardware and soft-
ware are produced, it is possible to improve accuracy by replacing estimates with sim-
ulation, and simulation with measurement.

AND

5.1
Accept

Effectiveness
Measures

5.2
Accept

Behavior
Model

5.10
Calculate
System

Performance

5.5
Measure
Attribute
Values

5.6
Simulate
Attribute
Values

5.7
Estimate
Attribute
Values

5.11
Calculate
System

Effectiveness

5.8
Perform

Effectiveness
Measure
Survey

5.9
Perform
Priority
Survey

AND

5.15
Choose

Alternative
Structure

5.14
Display
System

Effectiveness5
Perform

Trade-off
Analysis

Core Step 4.5

5.4
Select
Alternatives

5.3
Accept
Object
Model

5.12
Other
Alternatives

No

Yes

Figure 9-1. FFBD View of Core Step 5

5.13
Feasible
Alternative

to core
step 1

NoYes
204

Perform Trade-Off Analysis
Measurement.
 The best values of attributes for calculation of system performance and effectiveness
are obtained by measurement of the attributes on components produced under pro-
duction conditions with production tooling. Modern systems have been built on
aggressive schedules with 80% of the hardware built in this manner and tested as
components prior to first assembly and test, (Reugg, Field, and Boldblatt 1993). Mea-
surements on prototypes or brass boards are somewhat less reliable because of the
influence of actual production conditions.

Simulation.
When parts are not available for measurement or when the measurement process is
expensive or time consuming, attribute values can be calculated by simulation. The
results are only valid if the simulation technique has been verified to be accurate by
comparison of simulation results with actual measurements. In some cases the simu-
lations are not sufficiently accurate for absolute values of attributes, but can be used
effectively to interpolate between more expensive measurements.

The simulations used in Step 5.6 for these purposes are based on the equations
of physics, chemistry, biology, materials science, communications engineering, com-
puter science, etc. They very often use numerical techniques to account for complex
boundary conditions. They simulate the physical and logical reality of the compo-
nents. They are not the executions of behavior models discussed earlier.

Estimation.
When neither measurement nor simulation is possible one resorts to estimation. The
need for estimation declines as work progresses. The very best available engineering
experience needs to be used for estimation. People are generally consistent in their
estimates. However, some people habitually estimate high, some on target, and some
low. It is important to track the sources of the estimates and compare them to histori-
cal data. Multiple estimates for the same attribute are developed with survey tech-
niques.

The values for attributes improve as the development proceeds. Pre-production
prototypes are often hand assembled by very knowledgeable craftsmen. Parts may
have been hand tooled and adapted to fit the evolving design without all of the infor-
mation incorporated in the system design models. For software, alpha test quality
often does not include all of the rigorous features of production software. Portions
may be stubbed out and vital areas such as error recovery may be incomplete. Any of
these conditions can affect the results of measurements on components and the sys-
tem. It is necessary, therefore, to compare current results with prior values used in
trade-off analysis. If large discrepancies occur, they must be tracked down and
explained. If the discrepancies persist, the prior trade-offs need to be re-examined.
205

Perform Trade-Off Analysis
9.2.2 Survey
Some of the alternative components that are defined during the development of
designs and architectures need to be selected based on the preferences of users, opera-
tors, or owners. The important criteria are appearance, feel, sound, ease of use, etc.
This work is carried out in Step 5.8 Perform Effectiveness Measurement Survey. It is
carried out for those components which are important to prioritized Effectiveness
Measures and which are selected based on preference.

The development of complex systems often spans a number of years. There may
be an appreciable passage of time between the early prioritizing of Effectiveness Mea-
sures in Core Step 2 and the definition of the major design and architecture alterna-
tives for trade-off. It is often desirable to repeat the prioritizing of Effectiveness
Measures in Step 5.9 with a selected survey group which has been shown the alterna-
tive designs and architectures. Because these efforts determine acceptance in the mar-
ket place, it is important to both get them correct. It is also important to change them
only occasionally to prevent excessive change in requirements during the develop-
ment.

The techniques described in Chapter 6., like the Analytical Hierarchy Process,
are used to perform the surveys of preference and priority to get quantitative and use-
ful results.

9.2.3 Calculate System Performance
The earlier Core Steps, 2 Define Effectiveness Measures, 3 Create Behavior Model,
and 4 Create Object Model have defined the performance equations and the attributes
which are their arguments. As Attribute values are obtained, the performance is calcu-
lable for any of the candidate designs at any level of parts hierarchy. Feasibility of a
candidate design is shown when its calculated performance meets or exceeds the sys-
tem level requirement. The calculation of system performance, Step 5.9, from the
parts tree and the attributes of the components can be automated when the design is
captured in executable models.

9.2.4 Iterate
If no design meets the specified system performance, then one iterates. Alternatively
one relaxes some of the requirements, or the project is abandoned as being infeasible.

9.2.5 Calculate System Effectiveness
System Effectiveness Measures are calculated in the same manner as is performance.
These measures are calculated only for those candidate designs that are feasible,
which meet performance requirements. Automated calculation using the parts tree,
structure information where required, defined attributes, and defined equations pro-
vides a major savings in time and cost.
206

Perform Trade-Off Analysis
9.2.6 Other Alternatives
If any design and architecture alternatives have not been evaluated, the process
returns to step 5.4.

9.2.7 Display System Effectiveness
Often there are from three to about ten effectiveness measures which depend on a
number of attributes of hundreds or thousands of parts in complex and non-linear
ways. There is the choice of examining the impact of the design alternatives on the set
of effectiveness measures, or of combining the effectiveness measures into a single
cost function with weighting factors. The advantage of the single cost function is that
it provides a single number on which to base the selection of the design to be used.
The advantage of examining the set of individual effectiveness measures and how
they vary with alternatives is that one can see where the sharp maxima and minima
occur and where the broader maxima and minima occur. It is sometimes prudent to
select a somewhat less optimal design if maxima vary slowly with attributes so the
tolerances required on the attributes to can be large.

There are a number of convenient ways to display the effectiveness measure
results. If the alternatives are discrete, use component A or B or C, then a table, a bar
graph or a spread sheet can capture much of the information, (Ghassemi, Conway,
and Hines 1994). If the alternatives are continuous, like a weight or a physical dimen-
sion, then multi-dimensional graphs can be plotted using visualization tools. A vari-
ety of techniques are available to look at multivariate data. Three dimensions, color,
shape, motion, and spatial positioning can all be used to represent different aspects of
the data.

Several quality methodologies like House of Quality and Quality Function
Deployment (Clausing 1994) define views which capture this type of information.

9.2.8 Choose Alternative Structure
The choice of a design solution based on effectiveness often needs consensus among
management, customers, and other stakeholders.

9.3 Information Model

Four objects, which are shaded in Figure 9-2., Information Model for Perform Trade-
off Analysis, were added to the earlier model (Figure 6-10., Information Model for
Create Effectiveness Measures on page 151) to account for performance as well as
effectiveness. These objects include Non-temporal Performance Requirements and
the Non-temporal Performance Equations from which they are calculated. They
include Temporal Performance Requirements and the Time Lines that are compared
to them.
207

Perform Trade-Off Analysis
Simulation, measurement, and estimation provide values for the attributes of the
components. Non-temporal performance equations use the attribute values as argu-
ments of equations that calculate the performance of the system. The calculations rely
on the parts tree and, in some cases like reliability or moment of inertia, on system
structure. The calculated values are compared with the required values of performance
at system level to establish feasibility of the system.

The Temporal Performance Requirements are response times that must be met
by the system. When the behavior and structure are captured in executable models,
they can be executed by an execution engine to produce overall system time lines. The
time lines are the response threads through the system based on the individual
response times or response time probabilities for the components. The execution
engine can be a computer tool or a team working manually. The manual work is time
consuming and difficult to keep free of errors.
208

Perform Trade-Off Analysis

 The many different physical simulations which must be performed to get
attribute values for trade-off require many different sophisticated modeling tools - for
stress, heat transfer, fluid flow, crack propagation, chemical reaction, communica-

Subject
System

Attributes

Subject
System

Object

Object
Interfaces

Structure
operations

Attributes

ranked by

computed

Estimation

Cost

Effectiveness
Measure

Simulation

Measurement

behavior

have

Design

determine
alternatives

Priority

Function

establish

selects

Equations

with

have

Execution
Engine

executes
behavior

compute

describe
structure

Effectiveness
Measures

Effectiveness
Measures

from
Attributes

Effectiveness
Measures

from
Modeling

Effectiveness
Measures

from
Preferences

Priority
Survey

generate

Values

have

provides

Effectiveness
Measure
Survey

generates

Temporal
performance
requirement

Non-temporal
performance
requirement

Time
Lines

Non-temporal
performance
equations

1+

1+

generate

validate

computed
with

Figure 9-2. Information Model for Perform Trade-off Analysis

Value Computation

arguments for
arguments for
209

Perform Trade-Off Analysis
tions fidelity, logic evaluation and design, etc. Their inputs are related to the informa-
tion stored in the system modeling tools and they provide attribute values needed by
the system modeling tools. In addition there are text generation and text requirement
management tools. The present situation is described below.

9.4 The Problem of Tool Integration

Multiple tools exist for managing the Initial Information, for the Behavior and Struc-
ture Modeling, for roll up of attribute values to performance and effectiveness, and to
perform the surveys. Powerful visualization tools exist to capture multi-dimensional
trade-off results and to display them to management, users, and customers. There are
tools for risk analysis and scheduling and for configuration management of all the
information. There are many tools for physical simulation of components. Most of
these tools have been developed independently and do not talk with one another. The
integration of the tools into an environment is presently left to the engineering organi-
zation buying the tools. Integrating a large number of tools with tailored binary inter-
faces results in costly maintenance as the tools are independently revised by their
vendors.

The problem is difficult because the same named piece of information is not
used with the same meaning in different tools, the data structures are defined differ-
ently, the systems for managing data are different, and many tools provide no access to
their stored data. It is a matter of engineering to reconcile the data structures and data
management systems. More difficult is the lack of any accepted guide to the informa-
tion required to do systems engineering and specific unique meanings for each piece
of information. It is a vision of this book that meta-process descriptions of systems
engineering described in executable models can provide rigorously defined informa-
tion and become a basis for tool evolution into integrated environments. The meta-
process definitions must come from systems engineering professionals.

Similar steps have been taken in mechanical engineering and in digital engineer-
ing to make possible the integration of design tools and manufacturing tools. Feasibil-
ity of the tool integration has been demonstrated in these other fields after certain
prerequisites have been met.

9.4.1 Prerequisites for Tool Integration
There are a number of fruitful approaches and architectures, like CORBA, DCE, and
PCTE, to implement tool integration (Epperson 1994). None of these approaches can
succeed unless the work to be done is well defined so that functionality is consistent
across the tools. None of these approaches can succeed unless the information items
are treated with consistent meaning in all the tools. Prerequisites for automation of
systems engineering with an integrated tool set are:

1. A well defined engineering process captured in executable models

2. A set of information models for each step in the process
210

Perform Trade-Off Analysis
3. A rigorous implementation standard for exchange of data. Several exist
(Epperson 1994).

Without this information, tool vendors automate particular methodologies
which are incompatible with one another, make different semantic assumptions about
entities given the same name, and have no available standard for creating interfaces
among tools. With the information above the following is possible:

1. Comparison of the different systems engineering methodologies in use.

2. Automation of the meta-process so that the views and notations needed for dif-
ferent systems engineering methodologies can be generated and projected
from an abstract model stored in the tool. Multiple views are consistent by
generation from the data in an abstract model.

3. Generation of detailed requirements and specification in executable form in
the views and notations of the downstream engineering disciplines.

4. Maintenance and enhancement of large systems by modifying requirements in
models and regenerating the downstream details. This is much less costly than
changing downstream detail directly, and it maintains system documentation
throughout the maintenance and enhancement cycle. It eliminates future
reverse engineering.

5. Integrated tool sets that span the systems engineering work.

6. Ability to search the architecture solution space or the design solution space
semi-automatically by specifying search rules and evaluating effectiveness
reports. This is the efficient way to develop new product releases based on
product already in the market. It has been applied in other fields.

9.4.2 A Comparison with Mechanical Engineering Evolution
Mechanical engineering and some of the other engineering disciplines predate sys-
tems engineering and as a result have evolved farther. They have gone through stages
of development, documentation and automation that systems engineering is just
entering. It is instructive to look at analogies with these older disciplines as a means
of understanding the stages through which systems engineering is likely to pass

Rigorous Capture of Details
 Mechanical engineering must capture the details and the tolerances of three dimen-
sional geometry; must describe parts accurately. English language alone is inade-
quate. For all but the simplest cases systems engineering must capture the needs of
users and describe the behavior and structure of a system that will meet those needs.
Natural language alone is inadequate to handle the detail. Mechanical Engineers
accomplish this through the application of a drafting process that allow engineers to
211

Perform Trade-Off Analysis
define objects in three dimension using three orthogonal views. Any other rotated
view can be derived from the three by mathematical and graphic techniques. The
foundations were described in 1801 in La Geometrie Descriptive, by Gaspaard
Monge. Systems engineering has not yet agreed on a rigorous definition of process,
the information captured at each step, and a language for expressing systems work.

Automation
 Mechanical engineering began to be automated in the 1960’s and 70’s with the advent
of mini-computers. Companies like Applicon, Gerber, and Computer Vision provided
tools to capture geometry. But these tools could not talk with one another or with the
many tools in manufacturing which must capture the design geometry and modify or
transform it. The manufacturing tools create machine tool cutting paths, geometry for
fixtures, allowances for part shrinkage during sintering, etc.

The need for an integrated set of tools led to the formation of professional orga-
nizations dedicated to defining the semantics and information required for geometry
definition and transformation. These efforts were stalled for many years until the defi-
nitions began to be written in computer executable form. The language chosen for this
was EXPRESS; other languages could have been chosen. With the rigor of executibil-
ity it has been possible to create the STEP/PEDES standards and for vendors to
develop tools which can be integrated into an environment. Major aircraft have now
been designed by Boeing with automated geometry transfer, (Norris 1995).

Systems engineering needs to provide detailed information to other engineering
disciplines in their own languages and notations which are and will remain inconsis-
tent with one another and consistent with their own traditions. It must provide infor-
mation to the product stakeholders - operators, users, managers, marketing, customers,
etc. in forms that they can understand. It is essential that there be rigor in the systems
information and automated transformation to the tools of the other disciplines and
product stakeholders. This will require rigorous process and information models for
systems engineering to be followed by the development of integrated environments.

 Semi-automated Search of the System Design Space
 Both systems engineering and mechanical engineering share the need to find near
optimal solutions to complex problems. Mechanical engineering often deals with
complex part boundaries and must perform complex analyses that involve stress, tem-
perature distribution, materials properties, and part fatigue. The solution of such prob-
lems has traditionally required the iterative solution of the analysis using separate
sophisticated finite element tools for each of the disciplines - thermal, stress, etc. In
recent years it has been possible to integrate such tool sets into an environment. Asso-
ciated with the environment is a set of search tools combining analytical, rule based,
and heuristic optimization techniques (Ashley 1992). An engineer prescribes the ini-
212

Perform Trade-Off Analysis
tial part shape and boundary conditions. He prescribes rules for conducting a design
space search and for modifying the part boundary based on search results. He then
monitors the alternative part shapes and effectiveness factors like cost, weight, reli-
ability as produced by the analysis by the environment. The engineer does a maxi-
mum of thinking and exploration and a minimum of manual labor.

 The capture of system designs in executable models in an integrated tool set is
a necessary prerequisite for any automated search capability. The use of COTS prod-
ucts, of reusable components and of new components with defined properties and
behavior means that semi-automated generation of system design alternatives and
their effectiveness is possible. The payoff in reduced cost of development and in time
to market is large. Today this remains a research problem, a vision, which can only be
approached by first achieving rigorous capture of details for the engineering process
and for products, and by creating integrated tool environments.

9.5 Exercises

1. Develop a structure diagram for measurement. Include information describing how
the measurement is taken.

2. Describe the relationship between effectiveness measure equations to cost func-

Project, # Parameters varied
Manual

Time
Automated

Time

Aircraft Engine Preliminary Design, 100
parameters

10 Weeks 1 week

Molecular structure design, 150 parame-
ters

1 week 1/2 day

Cooling Fan Design, 18 parameters var-
ied

8 weeks 1/2 day

DC Motor Design, 70 parameters 2 weeks 1/4 day

Power Supply Design, 35 parameters 3 weeks 10 hours

Nuclear Fuel Lattice Design, Solution

space ~ 10 10
1 week 2 days

Aerodynamic and Mechanical Design of
Turbine Blades, 700 parameters and 36
different engineering codes (tools)

12 to 24
months

2 to 4
weeks

Table 5: Comparison of Manual and Automated Search for System Solution
213

Perform Trade-Off Analysis
tions. See Figure 9-2., Information Model for Perform Trade-off Analysis on page
209

3. Consider two tools used in design: the first a text editor and the second a diagram-
ming tool. What problems are used when the tools are used together.

4. Give an example of three or more tools which were designed to work together.
What features enable them to work together?

5. Select a display technique which highlights the differences between Architectures 1
and 2 in Table 6., Two Architectures.

6. Would the display used in question 5 work if there were hundreds of values for each
architecture?

Architecture 1 Architecture 2

102 654 3 90 511 5

14 876 3 26 934 1

44 521 2 56 634 1

8 783 1 20 945 1

65 981 5 53 546 4

80 501 3 68 782 3

21 619 4 33 682 3

11 789 3 24 833 2

38 838 1 50 934 4

weight speed size weight speed size

Table 6: Two Architectures
214

Perform Trade-Off Analysis
9.6 References

Ashley, Steven, Engenious explores the design space, Mechanical Engineering, Vol
114, pp 49, February 1992

Clausing, Don P. 1994. Total Quality Development. ASME Press
Epperson, Roy E. 1994. Integration strategies and technologies for computer-assisted

system engineering environments. Fourth Annual International Symposium
National Council on Systems Engineering Vol. I, 913-920, San Jose, CA.,
August 1994

 Ghassemi, K., Conway, E.and Hines, J. System modeling through parametric spread-
sheet analysis. Fourth Annual International Symposium National Council on
Systems Engineering Vol. I, 433-439, San Jose, CA., August 1994

 Norris, Guy. 1995. Boeing’s seventh wonder. IEEE Spectrum. October: 20-23.
215

Perform Trade-Off Analysis
216

Create Build and Test Plan
Create Build and Test Plan
10.1 What Core Step 6 Is

Core Step 6 is the creation of a plan for how the subject system shall be built. It takes
into account realities of time to market and needed competitive features, available
resource for implementation, technical risk, time risk, schedule risk, procurement
times, subcontracting, the involvement of partners, test and validation. The plan is
based on the engineering information that describes the chosen design or architecture
emerging from core step 5, Perform Trade-off Analysis. A detailed description of sys-
tems engineering planning with useful examples and lists has been published, (Blan-
chard and Fabrycky 1990)

The development of the plan includes both management and technical issues. It
must schedule the work such that results are obtained when needed and resource is
applied when needed, management issues. The results scheduled are outputs of the
technical work which require technical knowledge both for their identification and
for realistic estimates of effort for their development, technical issues. Both manage-
ment and engineering need to contribute to Core Step 6. It is a step in the core techni-
cal process because it paced by and requires the outputs from the preceding core
steps. Development of the next tier of the system needs to proceed with the manage-
ment and technical information from the build and test plan from the tier above.

The build and test plan is developed for the subject of interest at each tier of
development. The engineering team may be working at the context tier where the
subject of interest is the business using the product. They may be working at system
tier where the subject of interest is the product. They may be working at the sub-sys-
tem tier where the subjects of interest are the major segments of the product. A build
and test plan is created at each tier.

At each tier there are time-to-market issues and risk issues. At each tier there
may be a discovery of a needed capability not within the scope or competence of the
organization or of an unanticipated business opportunity that requires the cooperation
of another business. At each tier there may be a discovery of items which need to be
procured or developed by a subcontractor. As the program moves through the devel-
opment phases, the build and test plan is refined to encompass the increasing amounts
of detail needed for the increasing number of subsystems and components.
217

Create Build and Test Plan
There are test issues at each tier which are fully resolved up front by the model-
ing of the core technical process. The models produced by the core technical steps
produce the excitation scenarios and product response threads that are needed for val-
idation and test. At the context tier the modeling specifies the test excitations and
product responses that will validate that the product works in the business. At the sys-
tem tier the modeling specifies the excitations and responses that must be met by the
product segments. When modeling is applied to the development, both validation and
test begin at the beginning of the effort and are integral with the system development.
This relationship makes it straightforward to include design-for-test into the develop-
ment and to create a regression test suite for use at each tier of development. The build
and test plan shows the schedule for builds and for testing. It shows the interconnec-
tion between the engineering that creates behavior and structure models, and the
actual incorporation of the behavior information into a test suite.

The schedule for builds may be based on several different considerations. The
plan may schedule building the smallest components, and then combining them into
larger and larger assemblies until the system is complete and validated. For very large
systems with long development times, the schedule may call for partial builds of many
components and subsystems so that portions of the system may be assembled, vali-
dated early for particular response threads, and even applied in the field by selected
users to try out critically important system features. These choices are driven by busi-
ness realities. They may result in incremental release of functionality to the market-
place, a multi-generational product plan.

Early builds of particular components can be executed for early assessment, or to
reduce risks. This is a form of prototyping controlled by a defined process and path.

10.2 Creating a Plan

The creation of a plan involves the specification of a set of tasks, the ordering of the
tasks, the inputs/outputs for each task, a selection among existing resources to do the
work, assignment of tasks to resources, and time and performance conditions to be
met (especially cost). This is the problem of creating a system. The problem of creat-
ing a plan is the same as for any other system: product development, process develop-
ment, or business re-engineering. (Wymore 1993). It has the same complexity, NP-
Complete, as other system developments (Chapman and Rosenblit 1995). Automate
computation of the optimal plan is limited by this complexity. Heuristics and human
guidance must often be used to develop a sound plan.

Simple plans for small projects often involve only modest resource constraints,
few or no alternative paths, and a need for completion within a specified reasonable
time. Such plans can be developed readily with software that displays the critical path
through the plan, slack times for the resources, and resource utilization.
218

Create Build and Test Plan
The plans for large complex systems involve multiple constraints, time limits
that are difficult to meet, severe resource limits, and a complex set of alternative paths
needed for mitigation of identified risks. Such plans require considerable iteration
and effort to find an acceptable solution. They can be developed with the available
planning tools mentioned above with some difficulty and iteration or with the core
technical process and systems engineering tools. Systems engineering tools have not
traditionally provided support for scheduling. They are likely to lack automated
response to queries like “what is the critical path”.

The development of such complex plans is eased when they are produced itera-
tively as described here. High level schedules and decisions are made as early as pos-
sible. These are refined and adjusted as more technical detail about the system is
developed. This practical approach is often heuristic, using tools and algorithmic
techniques as an aid.

10.2.1 Network Scheduling Approaches
Network approaches to planning consider the project plan to be an ordered set of
independent tasks which may be represented as a network. The ordering operations
include the precedence of tasks, concurrency of tasks when several follow a proceed-
ing task, and iteration. Any set of successive tasks through the plan is considered to
be a path (corresponds to a response thread). Time estimates for the tasks are associ-
ated with each task. The time for all paths is computed and the path with the longest
time is noted. It is the critical path. The critical path limits when the project will be
completed. A reverse computation is then performed for all other paths, and the slack
time is found for each task. Resource utilization is shown.

These approaches and the supporting tools may or may not include provision for
representing alternative branching in the network in addition to and distinct from con-
currency. Such alternatives are vital when risk and its remediation are considered. For
risk remediation an alternative set of tasks is defined that begin a new direction for
work if a high risk part of the development does not show sufficient progress within a
prescribed time or resource expenditure.

Program Evaluation and Review Technique (PERT)
PERT is one of the algorithmic techniques which treats the plan like a network. It
incorporates uncertainty in the time estimates into the analysis. This is done by
assigning optimistic, likely, and pessimistic times in the estimates for completion of
each task. Mean and standard deviation are estimated for completion of the project
and for each task. Slack times are computed. Algorithmic solutions and tools to sup-
port them exist for PERT.
219

Create Build and Test Plan
Critical Path Method (CPM)
CPM deals with issues of finite resource and modification of resource assignments.
The tasks on the critical path become candidates for increase of resource. In fields like
the construction industry this may be accomplished with premium payment for finish-
ing tasks early. CPM supports the allocation of resource to control completion time.
Algorithmic solutions and tools to support them exist for CPM.

10.2.2 Resource Allocation
In engineering and in research it is sometimes the case that the time limiting tasks in
the critical path require special talent that is limited in availability. It may or may not
be possible to increase resource for particular tasks. Sometimes the cost increase of
special talent must be balanced against the increased technical risk if the resource is
not added. A critical talent may have to be shared across more than one program. Task
precedence may be coupled to available talent and cost. The assumption of task inde-
pendence that underlies many of the algorithmic approaches may not be valid in prac-
tical situations

Time may be only one of several optimization criteria; development cost, inclu-
sion of a particular partner, or risk may be as or more important. There then exist sev-
eral effectiveness measures for optimization of the plan. This is the general system
problem of resource allocation for which heuristic methods are used rather than algo-
rithmic approaches. The core technical steps provide such a process.

10.3 Behavior Model for Core Step 6

Figure 10-1., FFBD View of Core Step 6, describes the steps taken to create a plan in
terminology like that used in scheduling and planning. The objects to be used in plan-
ning are the resources, primarily people. An initial concurrent step, 6.1, is to develop a
resource profile of the kinds of talent needed and the available resource in useful
classes. This is a structure model. Another concurrent step 6.2, is to develop the tasks
to be performed. The third concurrent task, 6.3, is to develop precedence relationships
among the tasks. This may also involve definition of alternative paths as well as prece-
dence needed for purposes like risk remediation. The result of tasks 6.2 and 6.3 is
equivalent to the Functional Flow Block Diagram view of the behavior modeled by
the plan.

The next three concurrent steps complete the behavior, map it to objects, and
assign time performance attributes. Step 6.4 assigns the Resources to Tasks. This is
identical to mapping functions to objects. Step 6.5 adds milestones to the plan. The
milestones are outputs from the tasks. Their inclusion, with the tasks and precedence
relationships, constitutes an executable behavior. In step 6.6 the Task Durations are
added. This allows the behavior to be executed and generate time lines and slack
times.
220

Create Build and Test Plan
Frequently the next step taken is to examine the work loads assigned to the peo-
ple to see if the loads are balanced. Some people may have excessive work to do and
others may be too lightly loaded. Step 6.7 examines the loading of resources. If the
work loads are not level, the planning loops back to reassignment of resources,
adjustment of milestones, reassignment of task durations. This loop continues until
the resources and tasks are commensurate. When the loads on people are balanced the
plan can be evaluated for other purposes.

In step 6.8 the plan is executed as a behavior. Slack times are established and the
critical path through the plan is established. If the slack times are small, the plan is
satisfactory so far as time is concerned. If the slack times are large, the plan is unsat-
isfactory and resources and tasks must be readjusted. Concurrently step 6.9 assesses
the business realities which include risk, time to market, funding rate, competition,
and validation of progress. The plan must mitigate identified risks with alternative
paths and resource. It must get product to market in the available window, and meet
competitive product features in that time frame. The rate of expenditure must match
funding rates. The schedule must include deliverables to validate progress as the
work proceeds. Task 6.10 assesses the plan for incremental builds of product for early
validation and for periodic release of product to customers. This is an iterative

6.1
Develop
Resource
Profile

6.2
Develop

WBS

6.3
Develop

Precedence
Relationships

AND

6.4
Assign

Resources
to WBS Tasks

6.6
Assign
Task

Durations

Tasks

6.7
Examine
Load of

Resources

Not level

6.5

Develop
Milestones

6.8
Execute to

Assess Slack,
Critical Path

6.9
Assess

Business

6.10
Assess

Build & Test
Requirements

Realities
ANDAND

6.11

Publish
Plan

Level

Unsatisfactory

Satisfactory

AND

Figure 10-1. FFBD View of Core Step 6

6
Create

Build and
Test Plan

Core Step 6
221

Create Build and Test Plan
sequential approach to development of a series of plans and performing trade-off
based on the criteria of steps 6.8, 6.9 and 6.10. The loop back to the beginning of Fig-
ure 10-1., FFBD View of Core Step 6 generates additional plans until one that is near
optimal is found.

10.4 Information Model for Core Step 6

Figure 10-2., Information Model for Core Step 6 describes the information needed in
this step. The subject system is built from a set of components which are assembled,
tested and validated to show that the desired emergent behavior has been attained. Val-
idation must be done at the level of full integration because the properties of the sys-
tem depend upon the interactions of the components in both linear and non-linear
ways.

The Sequential Build and Test Plan orders the building and testing of the compo-
nents. The order of building depends upon and accounts for a variety of Business
Realities. These realities may be time-to market, funding rate, risk, competition, or
need for early validation of progress. Any or all of these realities may be important.
They constitute the optimization criteria or effectiveness measures for the creation of
the plan.

The risk may be cost risk, schedule risk, or technical risk or any combination of
the three. The risk is associated with the individual components, whether they will be
available and work properly within scheduled cost and time. The risk is recorded in
models as an attribute of the components, but the risks need to be assessed for their
importance to the success/failure of the system as a whole. They cannot be simply
summed for the system, but must be assigned weights depending upon their impor-
tance. There is no technique for measuring risk directly, like weight or height. Rather
risk values and weights may be estimated by experienced engineers and managers
assigned the responsibility, or they may be estimated by survey of an informed group
of people using statistically valid techniques (Saaty 1983). The importance of risk in
planning depends upon the important aspects of the application, captured in the effec-
tiveness measures, particularly for technical risk. If the effectiveness measures include
performance properties like availability, safety, or security, then the risks associated
with these properties of the system will be critically important.

Much of the planning work is based on estimates of the total size or cost of the
development. Techniques and software exist for creating a historic basis of estimate
and for estimating project cost and resource needs, PRICE Models from Lockheed-
Martin and COCOMO Models, (Boehm 1981), (Thusen and Fabrycky 1989).

Validation of progress is accomplished by establishing that the response of
things is correct. The system or component is specified, designed, or implemented
properly if the responses to excitation are the needed responses. This is a matter of
evaluating complete response threads through the system or of the portion of the
threads for a particular component.
222

Create Build and Test Plan

Tracking and reporting compares the plan against the time, cost, resource, and
milestones for the completion of things, against validated progress based on response
characteristics. Do the things do what was intended. The work breakdown structure
defines the tasks to be performed and these tasks are assigned to resources (people) as
work packages. It is important that the work breakdown structure and the work pack-
ages correspond to the actual parts tree emerging form the project, rather than a con-
tractual parts tree which has changed substantially during the project.

Components

Milestone Cost
Schedule

Tracking
and
Reporting Business

Realities

orders the
build &
test ofmonitored

Risk

Show
end-to-end
response

Response
Threads

Validation
of Progress

Funding
Rate

Time to
Market

Work
Breakdown
Structure

Time
Schedule

Work
Package

Parts List
(aggregation
of objects)

Sequential
Build & Test
Plan

Subject
System

Attributes

Subject
System

assembled,
tested,
validated

Technical CostSchedule
RiskRiskRisk

Competition

behavior

accounts for

by

Resource

allocates

Risk

Risk establishes

assigned to

Figure 10-2. Information Model for Core Step 6

Survey
223

Create Build and Test Plan
10.5 A Check-off List for Planning Plan

Although the planning work involves systems engineering management heavily, it is
important that it be driven by both the technical realities and the business/management
realities. These realities may be in sharp conflict at times and must be resolved. A
check off list representative of planning is included here at the end of the chapter
because of the importance of technical input to planning. It is vital to take into account
all of the engineering results by modifying plans whenever trade-off analysis results in
an accepted design or architecture for the system or a component.

A Check-off List
• Plan based on the design or architecture information emerging from core step 5,

Perform Trade-off Analysis

• Demands an understanding of:

• The Systems Engineering Process
• Specification to suppliers
• Specification to other engineering disciplines
• A process for handling discoveries/change
• The project tasks: top down for deliverables & resources, bottom up for fea-

sibility
• Definition of WBS plan tasks

• Identify tasks
• Create sub-tasks
• Determine sub-task flow

• Sub-task interdependency

• Create Pert-type diagram, CPM diagram, or Behavior Model
• Create decision basis, issue and issue resolution rationale notes, (Blanchard

and Fabrycky 1990)
• Determine sub-task resource profile

• Identify work environment needs

• Work space
• Tools
• Training

• Estimate manpower needs of tasks

• Person hours
• Labor category
• Experience
224

Create Build and Test Plan
• Assign resources to tasks

• Define responsibilities associated with tasks
• Document

• Assign sub-task start/stop times based on:

• Interdependency
• Schedule negotiated with informed engineers and management
• Resource availability

• Develop and insert milestones into plan

• Insert a hierarchy of milestones

• Major project deliverable milestones
• Top level review milestones
• Fine grain progress and quality review milestones at engineering level to

find unknown unknown’s early
• Level resources and iterate until satisfactory

• Analyze plan according to criteria below

• Elimination of negative variance
• Reduction of slack time
• Optimization for cost effectiveness
• Optimization of time to delivery using critical path
• Optimization to account for all effectiveness measures, iterative and heuris-

tic
• Adjust plan to funding rate
• Inclusion of tasks to mitigate risk
• Inclusion of tasks for test and validation tied to excitation and response

models
• Partition of project output for successive release as needed for plan conver-

gence or market needs
• Definition of tasks and precedences for early validation based on partial

builds
• Iterate to make plan converge

• Introduce combinations/concurrence/resource changes as needed to meet
plan criteria:

• Tailor Company Process and Specification Standards
225

Create Build and Test Plan
• Collect relevant process and specification documentation

• Company standards (Purpose is for reuse of best practice, not enforce extra
work)

• Contractual standards (Negotiate to keep work lean)
• Applicable government standards (safety, environment, ISO, etc.)
• Review for internal consistency and removal of all unnecessary work
• Remove inconsistencies and any unnecessary work
• Record issues and rationale for decisions
• Document or store results

• Generate Task Plan and Review for Approval with Appropriate Authority and
the Contributing Engineers

• Cite plan objectives
• Identify plan products
• Fuse any preceding plan results

10.6 Exercises

1. List the elements of a build and test plan

2. Describe the relationship of a build and test plan for an entire system to the plan for
one of its components.

3. Develop a context diagram for the system which creates build and test plans.

4. Develop a structure diagram for the system which creates build and test plans. Map
the behavior of Figure 10-1., FFBD View of Core Step 6 on page 221 to this struc-
ture.

5. Create an overall systems engineering plan for getting a new model of pocket knife
conceived, designed, and to market. Include a time schedule that is based on a work
breakdown structure. Show milestones for parts, part assembly, the full knife,
progress reviews to validate progress, and cost to milestone.

a. Identify what is to be reviewed.

b. Assign resources to work packages that will result in the work being per-
formed.

c. Show time to market and funding rate limits met by the plan.

d. Assume low cost competition from overseas, and assess risks.

6. Identify three tools which are commercially available to aid in the development of
plans. Do these tools cover the functions needed in planning? Do they integrate
with system developments tasks?
226

Create Build and Test Plan
7. Identify 10 risks that every plan faces.

10.7 References

Blanchard, BF and Fabrycky, W. 1990. Systems Engineering and Analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Boehm, Barry W. 1981. Software Engineering Economics, Englewood, N.J.: Pren-
tice-Hall

Chapman, William L. and Rozenblit, Jerzy. 1995. Complexity of the system design
problem. 1995 International Symposium and Workshop on Systems Engineering
of Computer Based Systems. Tucson, Arizona. 51-57. IEEE#95TH8053

 Saaty, Thomas L. 1983. Priority setting in complex problems, IEEE Trans. on Engr.
Management. EM-30, 140-155.

Thusen, G.J. and Fabrycky, W.J. 1989. Engineering Economy, Englewood Cliffs,
N.J.: Prentice-Hall

Wymore, A.W. 1993. Model-Based Systems Engineering. Boca Raton: CRC Press.
227

Create Build and Test Plan
228

Concept Analysis
Concept Analysis
11.1 What Concept Analysis Is

Concept Analysis is the study of the business which will use the subject system. The
study establishes what features the subject system should have by analyzing the value
of different features to the business, to its owners and to users of the system. This is
shown in Figure 11-1., Tiers of Analysis and Decomposition/Synthesis.

Collection of
Businesses using
Subject System

Business using
Subject System

Subject System

Sub-systems of
Subject System

Components

Analysis of

Analysis of

Analysis of

Analysis of

Analysis of

analyzes

analyzes

analyzes

analyzes

analyzes

Core Technical
Process

uses

uses

uses

uses

uses

Synthesis

Decomposition

Figure 11-1. Tiers of Analysis and Decomposition/Synthesis

Domain Tier

Concept Tier

System Tier

Sub-system

Component Tier
229

Concept Analysis
The tiers of analysis, domain analysis through component analysis, apply the
same core technical process to different objects in the developmental part tree that
extends from components to domains or collections of businesses. The flow of the
analyses may be bottom to top, synthesis; or top to bottom, decomposition; or a com-
bination of the two.

At any tier, the analysis can terminate for part of the system and a specification
may be produced for business partners or suppliers. In the domain and concept tiers
businesses may be discovered which are necessary for product success, but are consid-
ered to be outside the business arena of the company developing the product. At the
lower tiers, entire subsystems or particular components may be specified for external
development or as a purchased subsystem or component from a supplier.

The subject system studied in concept analysis and the other tiers of analysis
may be any thing: a product, a process, a business, a plan, etc. They all have in com-
mon: a set of criteria for what is most important, a behavior, a set of parts to build
them, and design/architecture alternatives in how the behavior is allocated among the
alternative parts which are selected for the structure. The similarities among product,
process, business and plan may not be apparent because of different choices of com-
mon words used to describe the modeling items which are common to them all. Table
7., Modeling Items, associates a few of the commonly used words with modeling
items.

Modeling Items Product Process Business Plan

Parts that do
things, (Objects)

People, compo-
nents or sub-sys-
tems

People or equip-
ment

People, depart-
ments, divisions,
facilities

Resources

What is done,
(Behavior)

Feature, response Process step, pro-
duction rate

Job, activity, task,
responsiveness

Task, schedule

Criteria for
choice, (Effec-
tiveness mea-
sures)

Cost, needs, qual-
ity

Cost, productiv-
ity, quality

Cost, efficiency,
quality, service

Cost schedule,
time schedule,
resource utiliza-
tion

Interconnection
of parts and total
system perfor-
mance (Design/
architecture)

Design The process Model The plan

Table 7: Modeling Items
230

Concept Analysis
11.2 Applying the Core Technical Process to Concept Analysis

This chapter focuses on how to apply the core technical process to concept analysis. It
does this with a simple example problem which uses a product as the subject system,
but could have used a process, a business or a plan. The example problem chosen is
an automated teller machine, ATM. Solutions to representative parts of the ATM
problem are described in this book to keep the discussion reasonably compact.
The ATM product was selected to be small, easily understood by people through their
daily experiences, and to encompass interesting aspects of modeling. It has been used
as an example in publications and other books. The approach used in this book is
unique in going from concept through component specification with executable mod-
els as a systems problem. The approach is unique in using a single repeated technical
core process, shown for reference in Figure 11-2., FFBD View for the System Engi-
neering Core Technical Process, applied first to bank context and then to the bank.

 The approach eliminates unneeded modeling as much as possible to be efficient
and the example illustrates this balance of thorough modeling against rapidly elimi-
nating alternatives to maintain engineering productivity. Where decisions can be
made early and clearly regarding component choices for optimizing performance, this
is done. Where computation is required to decide among alternatives the more formal
trade-off step, Core Step 6., is applied. In the example the decisions of both kinds are
noted.

1
Assess

Available
Information

AND

2
Define

Effectiveness
Measures

3
Create

Behavior
Model

4
Create

Structure
Model

5
Perform

Trade-Off
Analysis

6
Create

No Feasible
Solution

Feasible

 Iterate to Find a Feasible Solution

Solution
& Test Plan

Build
Sequential

Figure 11-2. FFBD View for the System Engineering Core Technical Process
231

Concept Analysis
11.3 Core Steps Applied to the Context of the Bank with the ATM System

Concept analysis is applied to the business using the ATM system, rather than to the
ATM system itself, as shown in Figure 11-1., Tiers of Analysis and Decomposition/
Synthesis on page 229. That business is a bank. Each of the seven steps as applied to
the bank will be illustrated for concept analysis. The goal is to establish the concept
for the ATM system based on value to the bank when it uses the ATM’s in place of its
present tellers and their manual entry of transactions.

11.3.1 Assess Available Information
The available information is taken from a problem statement that was written for soft-
ware engineering development. Since we are considering the total ATM system we
expect that a range of system related problems that need to be corrected in the avail-
able information will be found. The available information is taken from a problem
statement in (Rumbaugh et al. 1991, 151) Substitutions to replace the word software
with system names are inserted, italicized and in brackets.

Initial Information for an Automated Teller Machine System
“Design the software [an automated teller machine system] to support a computerized
banking network including both human cashiers and automated teller machines
(ATM’s) to be shared by a consortium of banks. Each bank provides its own computer
to maintain its own accounts and processes transactions against them. Cashier stations
are owned by the individual banks and communicate directly with their own bank’s
computers. Human cashiers enter account and transaction data. Automatic teller
machines communicate with a central computer which clears transactions with the
appropriate banks. An automatic teller machine accepts a cash card, interacts with the
user, communicates with the central system to carry out the transaction, dispenses
cash, and prints receipts. The system requires appropriate record keeping and security
systems. The system must handle concurrent access to the same account correctly. The
banks will provide their own software for their own computers; you are to design [the
ATM system] the software for the ATM’s and the network. The cost of the shared sys-
tem will be apportioned to the banks according to the number of bank customers with
a cash card.”

The usual situation is initial information that is partially complete, inconsistent
in level of detail, partly requirements, partly design, and partly operations concept.
Much of the information may be not be directly verifiable, some of it may even be
false or misleading. Modifications to the initial information are produced in this first
core step. Each of the modifications must be documented and tracked. They must be
agreed to be all of the interested stakeholders. The art of systems engineering starts at
this step. No methodology can tell an engineer what questions need to asked about the
system. For this education and experience are the guides. The best systems engineers
learn how to ask the correct questions while avoiding unnecessary complexity that can
arise from rote dedication to a methodology.
232

Concept Analysis
The subsequent modeling process discovers additional problems and suggests
their correction. The sentences in the initial information are numbered below. Modi-
fied statements are shown as bulleted sentences and comments about them are
dashed.

1. “Design the software [an automated teller machine system] to support a com-
puterized banking network including both human cashiers and automated teller
machines (ATM’s) to be shared by a consortium of banks.”

• The automated teller machine system shall replace interactions between bank
tellers and bank customers with interactions between the ATM system and cus-
tomers.

• It is not yet known which existing transactions shall be replaced.
• It is not yet known how much of the network belongs in the ATM system or

if this may vary with different bank customers for the ATM system.
2. Each bank provides its own computer to maintain its own accounts and pro-

cesses transactions against them.

This statement contains design information about banks which may not repre-
sent the banking world. This will need to be substantiated or modified to match
the real world situation. In considering the context and boundaries of the sys-
tem we can choose to make this a requirement or consider the possibility that
the computers are part of the system or perhaps that there is a third party that
owns and operates the computers.

Banks might use an external service like First Data Corporation to track their
transactions and provide both internal information to the bank and monthly
reports to bank customers.

3. Cashier stations are owned by the individual banks and communicate directly
with their own bank’s computers.

• Cashier stations are owned by the individual banks.

• Cashier stations communicate directly with their own bank’s computers.

• Sentence 3. has been broken into two independent statements.
• The two statements describe the structure of banks, again this needs to be

verified. In the absence of verification the two statements will be accepted
as generally true of banks not yet using ATM systems.

4. Human cashiers enter account and transaction data.

• Human cashiers enter account and transaction data.

• The statement describes the structure of banks.
• The statement is accepted as generally true of banks not yet using ATM

systems.
233

Concept Analysis
5. Automatic teller machines communicate with a central computer which clears
transactions with the appropriate banks.

• The automated teller machine system shall communicate the transactions it
captures to the banks.

• The automated teller machine system shall execute only those transactions for
which validation is received from the banks.

• Automated teller machines may mean only the hardware/software that inter-
faces with bank customers.

• Automated teller machines may be only a subsystem or component of the
ATM system.

• The interface with banks is not yet clear.
• For a viable product line it may be necessary to configure ATM subsystems

for particular banks, tailored to what the bank already owns or leases.
• “Clears transactions” is ambiguous. It can mean validating a submitted

transaction so that the ATM system can complete the transaction or it can
mean communicating the transaction to the bank without a validation proce-
dure in place. The second bullet assumes it means validation, and the proce-
dure for validation is not identified. The procedure could vary among
different banks using the ATM system.

6. An automatic teller machine accepts a cash card, interacts with the user, com-
municates with the central system to carry out the transaction, dispenses cash,
and prints receipts.

• The automated teller machine system shall accept transactions after reading a
cash card and receiving a valid pin number from a system user.

• The automated teller machine system shall dispense cash only for those cash
transactions for which validation is received from the banks.

• The automated teller machine system shall print receipts for the transactions
executed.

• The words “interacts with the user” are redundant with 1. above.
• The words “communicates with the central system to carry out the transac-

tion” are redundant with 5. above.
7. The system requires appropriate record keeping and security systems.

• The ATM system shall maintain correct records.

• The ATM system shall generate correct reports.

• The ATM system shall keep information secure.

• The ATM system shall keep money secure.
234

Concept Analysis
8. The system must handle concurrent access to the same account correctly.

• Simultaneous or overlapping requests to the ATM system for transactions on
the same account shall be adjudicated at the point in the network where simul-
taneity or overlap is detected.

• “Simultaneous” is ambiguous here. It can mean either that two requests are
made at exactly the same time, or that the duration of two user sessions on
the same account overlap.

• Simultaneous or overlapping requests on the same account can be entered
into ATM machines on different networks on different continents. Only a
central facility serving that bank account can know that they are simulta-
neous and follow an appropriate procedure.

9. The banks will provide their own software for their own computers; you are to
design [the ATM system] the software for the ATM’s and the network.

• Design the ATM system.

• Begin the design work with concept analysis.

• These are instructions.
10. The cost of the shared system will be apportioned to the banks according to the

number of bank customers with a cash card.

• The ATM system shall operate at maximum benefit/total-cost to the banks it
serves.

• Sentence 10. deals primarily with how the banks using the ATM system are
to be billed, which may best be tailored for different bank customers of the
ATM system vendor.

• Total cost/benefit to the bank will be a selection factor for banks choosing
an ATM system vendor.

Requirements Extracted from the Initial Information
The bullets above are collected here and numbered. They do not comprise a complete
set of requirements. Many are not verifiable. They apply at different tiers of hierar-
chy. Some of the bullets are not requirements. Some are statements about the banks as
they exist or are instructions about the problem.

Requirements for the ATM system

• 11.1 The automated teller machine system shall replace interactions between
bank tellers and bank customers with interactions between the ATM system
and customers.

• 11.2 The automated teller machine system shall communicate the transactions
it captures to the banks.
235

Concept Analysis
• 11.3 The automated teller machine system shall accept transactions after read-
ing a cash card and receiving a valid pin number from a system user.

• 11.4 The automated teller machine system shall execute only those transactions
for which validation is received from the bank.

• 11.5 The automated teller machine system shall dispense cash only for those
cash transactions for which validation is received from the bank.

• 11.6 The automated teller machine system shall print receipts for the transac-
tions executed.

• 11.7 The ATM system shall maintain correct records.

• 11.8 The ATM system shall generate correct reports.

• 11.9 The ATM system shall keep information secure.

• 11.10 The ATM system shall keep money secure.

• 11.11 The ATM system shall operate at maximum benefit/total- cost to the
banks it serves.

Statements about the Structure of Banks

• B1. Cashier stations are owned by the individual banks.

• B2. Cashier stations communicate directly with their own bank’s computers.

• B3. Human cashiers enter account and transaction data.

• B4. Simultaneous or overlapping requests to the ATM system for transactions
on the same account shall be adjudicated at the point in the network where
simultaneity or overlap is detected.

Instructions about the Problem

• I1. Design the ATM system.

• I2. Begin the design work with concept analysis.

11.3.2 The Three Concurrent Core Steps, 2, 3, and 4
The next three core steps: Define Effectiveness Measures, Create Behavior Model,
and Create Structure Model are concurrent. Because text in a book is read sequentially
the full concurrency cannot be shown in the written form of this example. It is often
useful to consider the effectiveness measures very early because they provide guid-
ance in thinking about the models. In the development of large systems the problem
will likely be apportioned among teams such that work is proceeding in parallel.
236

Concept Analysis
Effectiveness Measures for the Bank
This work, like the assessment of the initial information relies on the experience and
creative thinking of the developers. The issue here is what are the statements about
the ATM system that will make it succeed or fail when brought to banks in competi-
tion with other ATM systems. A first selection is made from the results of analyzing
the initial information. The selection is made by applying criteria: (1.) “If this were
true the bank would buy our system! or (2.)“If this were not true the bank would
reject our system!”

• 11.7 The ATM system shall maintain correct records.

• 11.8 The ATM system shall generate correct reports.

• 11.9 The ATM system shall keep information secure.

• 11.10 The ATM system shall keep money secure.

• 11.11 The ATM system shall operate at maximum benefit/total-cost to the
banks it serves.

Statements 11.7 through 11.10 are chosen based on question 2. Statement 11.11
is chosen based on question 1. Bankers will choose the system that gives them the
maximum benefit/cost. The problem now faced by the designer is whether this is a
complete set of effectiveness measures. It is helpful at this point to think about the
structure of the context of a bank.

Context Structure for Bank
At this point a simple context for bank is needed. The functions to be performed and
the important attributes can be added later. Figure 11-3., Initial Structure of Bank
Context shows an initial structure for the context of bank.

Bank

Individual
Customer

Commercial
Customer

has accounts and
makes transactions

ATM
System

provides

uses uses

service

has accounts and
makes transactions

Figure 11-3. Initial Structure of Bank Context
237

Concept Analysis
The effectiveness measures have not taken into account the customers. Both
individual customers and commercial customers have accounts with the bank and
make transactions there with tellers. When the ATM system is installed, they may
alternatively use the ATM system. It must be so attractive to them that they will use it
in preference to the tellers. Otherwise the system will fail in the marketplace.

• Customers shall prefer to use the ATM system over the bank tellers.

Effectiveness Measures for the Bank
An initial set of six effectiveness measures, EM’s, can now be collected for the ATM
system. If others are found during modeling they will have to be added.

1. EM1. The ATM system shall maintain correct records.

2. EM2. The ATM system shall generate correct reports.

3. EM3. The ATM system shall keep information secure.

4. EM4. The ATM system shall keep money secure.

5. EM5. The ATM system shall operate at maximum benefit/total-cost to the
banks it serves.

6. EM6. Customers shall prefer to use the ATM system over the bank tellers.

Inspection of them shows that the first four deal with what the ATM must do. With
further analysis they can help with the analysis of the ATM system. Effectiveness
measures EM5. and EM6. deal with value to the bank and value to the customer. They
are of direct importance to the concept analysis.

To proceed further it is necessary to define the customer, the behavior of the cus-
tomer, and the structure of the bank. Only the individual customer will be considered
to keep the example short.

Define the Structure for Individual Customer
Figure 11-4., Structure for Individual Customer shows the association of the customer,
a person, with the accounts, part of the bank, which the customer has opened.
238

Concept Analysis

If there are other kinds of accounts they can be added. This is enough information to
help define the behavior of the individual customer.

Context Behavior, the Individual Customer
When the behavior of the customer is captured, the major excitations for the system
are obtained. They will be used not only in context analysis, but in defining compo-
nents and in testing and validating the system and its components. Figure 11-5., View
of Behavior of Individual Customer, shows many alternative paths in the behavior of
the customer. Alternative paths are annotated with estimated probabilities of their
usage. The customer may go to either the bank or to an ATM. Once there the cus-
tomer may perform a variety of transactions. The FFBD captures what the customer
does and it raises two questions:

1. Why would the customer prefer the ATM system?

2. Which of the transactions are the heaviest load on the bank tellers and can be
automated by the ATM system.

Preference for the ATM System

Customers are likely to prefer the ATM if it is in a safe place, has shorter lines than
the bank, is closer to home and to work, and is easy to use. Safe place is a matter of
finding locations, and will depend upon conditions in particular communities. Easy to
use is a human machine interface design issue that will be considered as components
are designed. It is important, but premature in concept analysis. Shorter lines and
closer to home are a matter of the number of machines put in place.

If one puts in place many more ATM machines than existing tellers, then the
lines will be shorter

Individual Customer

Account type
Account number

Make transactions

has

Checking
Account

Savings
Account

Loan
Account

Investment
Account

Account

Customer name
Account number1+1+

Figure 11-4. Structure for Individual Customer
239

Concept Analysis
If one puts in place many more machines than branch bank offices, then the
machines will be closer to customers than branch offices with tellers. If the ATM’s are
to be a third of the distance to a branch bank on average, then there must be about 3x3
= 9 ATM machines for each branch office. The effectiveness measures and behaviors
are beginning to provide refined information about the structure of the bank and the
ATM system.

Which Transactions to Automate

Applying for an account can be automated with some difficulty but results in loss of a
manager directly assessing the applicants, and loss of an opportunity to sell additional
services. Deposits and withdrawals from savings and checking are simple to automate.
Repaying loans is often done in person or by mail. Making and selling investments is
often conducted by phone or personal computer. The frequency of occurrence of these

OR

Apply for
Account

Deposit in
Checking

Withdraw
from Checking

Deposit in
Savings

Withdraw
from Savings

Borrow
Money

Make Loan
Payment

Make
Investment

OR
Continue
or Stop

Go to
Bank

Leave
Site

Sell
Investment

Go to
ATM

OR

Figure 11-5. View of Behavior of Individual Customer

.0006

.21

.36

.07

.15

.0006

.07

.07

.07

0.1

0.9

OR
240

Concept Analysis
transactions with tellers can be obtained accurately and quantitatively from bank
records. Transactions on checking and savings accounts are most frequent, with cash
withdraw from checking the highest. These frequencies of occurrence, after normal-
ization, are the probabilities for choosing a branch of the large “or” in Figure 11-5.,
View of Behavior of Individual Customer, representative values of probability are
shown on each branch. If loans and investments are conducted dominantly by mail or
phone, then automating savings and checking transactions can move 90% of the
transaction from tellers to ATM’s - provided the ATM’s are attractive to use. Proba-
bilities of going to the ATM or to branch banks are most reliable when measured by
observing bank customers choices with an installed system. In advance of an installed
system they are best obtained by survey of the bank customers.

Since there is no important trade-off for the context, we model the bank.

11.4 Core Steps Applied to the Bank with the ATM System

We accept the models already produced as available information, core step 4.1.

11.4.1 Structure of the Bank with the System, Core Step 4.5
 Figure 11-6., Structure of the Bank, models the important details we need to under-
stand the benefit to a national bank. Unneeded details have been left out of the figure.
241

Concept Analysis
Only the gross structure and the tellers are shown. The numbers shown are estimates
for a large bank. Numbers for a particular bank or national averages could be used.
The national bank is supported by about 10 regional banks. Each of these is supported
by about 20 local banks, and for each local bank there are about 10 branch banks. The
dominant number of tellers work in the approximately 2000 branch banks. It is in the
cost in these branches that the ATM system will have its major impact, though it will
benefit all of the banks. It is the branch banks that are located in the community to pro-
vide nearby service to bank customers whose deposits are loaned by the bank to gen-
erate income.

A classification for branch bank and bank attributes is given in Figure 11-7.,
Classes of Bank.

Teller
2 to 8, av. 4

Branch
Bank

Local
Bank

Regional
Bank

National
Bank

~ 10 ~ 200 ~ 2000

Note: ~ 2000 Branch Banks
~ 8000 Tellers
~ 20,000 ATM’s

Bank

Individual
Customer

Commercial
Customer

has accounts
and makes

ATM
Machine

provides

uses uses

service

transactions

has accounts
and makes
transactions

has

10+
3+

Figure 11-6. Structure of the Bank

ATM
System

contains a

support supportsupport
242

Concept Analysis

 The attributes of the subclasses are inherited from bank. The values shown for
branch bank are estimated average values for a typical branch bank. These values
would be different for a particular branch bank (an instance) in a particular bank.That
more precise data is available from the bank.

 A more detailed model of Teller is given in Figure 11-8., The Teller.

Bank
Investment
Building Investment
Building Area
Land Investment
Land Area
Investment Cost
Operating Cost
Heating/cooling
Electricity
Maintenance
Taxes

Perform Bank Business

Total Cost

Local
Bank

Regional
Bank

National
Bank

Branch Bank
Investment $750K
Building Investment $500K
Building Area 10,000 sq ft
Land Investment $250K
Land Area 160,000 sq ft
Investment Cost $37.5 K/yr
Operating Cost $17.5K/yr
Heating/cooling $1.5K/yr
Electricity $4K/yr
Maintenance $2K/yr
Taxes $10K/yr

Perform Branch Business

Total Branch Cost $50K/yr

Figure 11-7. Classes of Bank
243

Concept Analysis
The important attribute for teller for this analysis is the burdened salary.

11.4.2 Effectiveness Measure For Bank with the System, Core Step 2
The two effectiveness measures identified as of greatest importance in this concept
analysis are:

• EM6: Customers shall prefer to use the ATM system over the bank tellers”

• EM5: The ATM system shall operate at maximum benefit/total-cost to the
banks it serves.

Effectiveness Measure EM6. was used to generate some structural numbers about the
number of ATM machines per branch office and per teller. That information and the
structure and behavior modeling that has been done let us write equations for the ben-
efit for the ATM system.

Total Benefit = Teller Cost Reduction + Branch Office Cost Reduction

At least 3 of 4 tellers can be replaced with about 20,000 ATM machines.

Teller Cost Reduction = # Branch Banks x 3 x burdened salary of Teller.

Teller Cost Reduction = 2000 x 3 x $40,000 = $240 M.

At least 75% of branch offices can be moved into leased space of 500 sq. ft. in
popular locations like supermarkets for about $25,000 /yr. These numbers can be
refined in particular communities and with particular businesses

Branch Office Cost Reduction = 0.75 x # Branch Offices x (Total Branch Cost -
$25,000)

Branch Office Cost Reduction = $37.5M

Total Benefit = $280M /yr. or $14,000 per yr. and installed ATM Machine

For a bank with an annual earnings of about 2% of deposits, this saving repre-
sents an equivalent increase in deposits of about $14B. The benefit is very large. To
warrant the investment, the cost of the ATM system needs to be recovered in about
two years. The selling price of the system should be less than about $560M or $28,000
per ATM machine on the system. If the system can be created with a combined build,
install, operate cost of about $14,000 per ATM machine, then there is an excellent
business here.

Teller
Burdened salary: $40,000

Execute Transactions

Figure 11-8. The Teller
244

Concept Analysis
11.4.3 Behavior of the Bank with the ATM System, Core Step 3
In this example the behavior of the bank is not changed quantitatively. Rather some of
the activity in the bank is moved from tellers to the ATM system.

Figure 11-9., View of Behavior of Individual Customer Using the ATM System,
shows the excitations to which the ATM system must respond. The behavior model
for the system is equivalent to a set of written functional requirements.

We already know that some of the excitations are unlikely. Since we have not
fully evaluated their benefit, we represent all of the excitations and responses. The
ATM system stays on at all times, ready to respond to a user. Consequently its behav-
ior will look like an infinite loop. When the customer stops and so notifies the ATM
system, the system goes back to its initial function of presenting to the customer the
start instructions.

Figure 11-10., View of Behavior of the ATM System, shows the responses and
loops.

OR

Deposit in
Checking

Withdraw
from Checking

Deposit in
Savings

Withdraw
from Savings

Make Loan
Payment

Borrow
Money

Make
Investment

OR
Continue
or Stop

Leave
ATM

Sell
Investment

Go to
ATM

Figure 11-9. View of Behavior of Individual Customer Using the ATM System
245

Concept Analysis
The eight functions in Figure 11-10., View of Behavior of the ATM System, are only
top level names. Each of them must be decomposed and refined into complete descrip-
tions of exactly how the system responds to every input from the user and from the
banks. This detail is left until the system and the components are designed. At this
point in the development it is important to establish the responses required and the
benefit of each response. To get at the benefits it is necessary to have values for all of
the attributes used in the effectiveness measures and requirements. in this problem
they have been estimated during the model development. The job of getting accurate
values is part of trade-off analysis.

11.4.4 Trade-off Analysis of the Bank with the ATM System, Core Step 5
The preceding analysis has shown large potential payoff to the bank. It has captured
bank behavior and structure, ATM system behavior the criteria for trade-off and the
equations. It has provided an upper limit for the cost of producing, installing, and
maintaining the system.

The benefit/cost needs to be maximized, EM 5., to:

OR

Execute Deposit
in Checking

Execute Withdraw
from Checking

Execute Deposit
in Savings

Execute Withdraw
from Savings

Execute Loan
Payment

Execute Borrow
Money

Execute Make
Investment

OR
Receive
Continue or Stop

Execute Sell
Investment

Provide Start
Instructions Instruction

Stop

Continue

Figure 11-10. View of Behavior of the ATM Sys-
246

Concept Analysis
• Provide the bank the largest benefit/cost ratio

• Be competitive with other suppliers

• Have a satisfactory profit margin for the business of supplying ATM systems

 Figure 11-5., View of Behavior of Individual Customer on page 240, identifies
nine different features that may be embodied in an ATM machine. The list is repre-
sentative of useful features but is not exhaustive. These nine features can be com-
bined in 503 different ways. It is this explosion in the numbers of possibilities that
makes algorithmic solution of system problems impractical. Creative engineering,
heuristics, are used to prune the large solution space. The probabilities in the figure
show which features have the largest benefit individually. Which transactions the
bank automate should automate follows from the benefits shown in Table 8., Feature
Benefits to Bank. Features 1., 2., 3., 4., and 6. should be automated initially. The deci-
sion is made without considering all 503 options.

Some of the features require similar kinds of support. Withdrawing money from any
kind of account requires a money dispenser, a money supply, and periodic resupply of
money. Deposits to any kind of account require a safe repository for the deposit, and a
daily pick-up of the deposited material. This information suggests how to package the
features in different kinds of ATM machines that interface with the public.It is the
analysis of the system tier which follows concept analysis that establishes the cost of
these alternatives and the structure of the ATM System.

Figure 11-11., Kinds of ATM Machines, classifies the kinds of machines that are
likely to emerge from concept analysis based on the modeling completed so far.

Feature Benefit per Installed ATM Machine

1. Deposit in Checking $1680

2. Withdraw from Checking $2880

3. Deposit in Savings $560

4. Withdraw from Savings $1200

5. Borrow Money $4.80

6. Make Loan Payment $560

7. Make Investment (1) $560

8. Sell Investment (1) $560

Table 8: Feature Benefits to Bank
247

Concept Analysis
Attributes and functions are inherited and not listed a second time in the sub-
classes. the money machine and deposit machines are two obvious candidate products.
Their relative merits depend upon their relative costs. The transaction machine is an
advanced work station for banking that may become viable someday, but is a poor
candidate for an early release of product. Analysis of the system tier can uncover other
important types with very different costs.

Note that the computation machinery for trade-off was established in the earlier
modeling steps. In the trade-off analysis it is necessary to get adequate values for the
attributes. In this example that means going to banks to get their measured and
recorded data. That data is superior to engineering estimates such as those above. The
data will vary from bank to bank and region to region. It may be important to get the
data from several banks if the trade-off criteria do not provide wide margins for select-
ing product features.

ATM Machine
Total Withdraw Cost

Money Machine

Execute Withdraw form Checking
Execute Withdraw from Savings

Deposit Machine
Total Deposit Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment

Bank Transaction Machine
Total Transactions Cost

Execute Apply for Account
Execute Borrow Money
Execute Make Investment
Execute Sell Investment
Execute Cash Savings Bonds
Execute Wire Funds
Execute Get Cashier Check
Execute Get Money Order
Execute Get Investment Data

Figure 11-11. Kinds of ATM Machines
248

Concept Analysis
Within the scope of systems engineering there are a multitude of computation
and simulation methods that are used to find attribute values when measured values
are unavailable. They simulate the performance and properties of physical and logical
things like cost, weight, reliability, power consumption, algorithmic complexity, con-
trol loop error, crack propagation, etc. It is a responsibility of the systems engineering
management process to ensure that the specialized engineering talent for this work is
available and applied when needed.

11.4.5 Create the Sequential Build and Test Plan, Core Step 6
The modeling through trade-off has established the bank context, the behavior of the
user, relevant bank structure, how the product changes the bank, behavior and
requirements for the ATM system, and value to the bank. The next step is to decide
how to implement this opportunity. The modeling has identified potential business
relationships that are needed. In this example the bank may want to down size and
relocate branch offices into places like supermarkets. A vendor of ATM systems with
existing business relationships with national supermarkets can combine business re-
engineering consulting with the suppling of ATM systems. This is a matter of decid-
ing what business the vendor of the ATM system product will pursue. It is the issue of
how the vendor business will be implemented and what work must be done to make
that happen. The business implementation plans will differ depending upon the
choices made. If the choices made do not completely span the system solution, then
the products need to interface with the products of other companies, or partnerships
need to be created. One possible business choice follows:

Business scope:

1. Supply hardware and software for the capture and transmission of transactions
to a communication network.

2. Lease communication facilities.

 requires implementation of business relation with communication companies

3. Build custom interfaces to the MIS system of the bank

Requires involvement with banks to define functionality and tailorable inter-
faces

4. Interface with a separate business that performs back end transaction process-
ing and reporting

Requires relationship with a company like First Data Corp.

5. Service ATM systems, repair, and resell ATM equipment.

 Ensures a capability to maintain an available system

 Provides a separate revenue source
249

Concept Analysis
 Provides a path to continuing business in a saturated market for ATM’s

6. Consult to banks on installation of ATM systems and down-sizing branch
banks

Ensures internal bank procedures for security of information and funds.

Requires relationships with supermarket chains.

Maintains a presence with banks to get sales

The plan, constructed for the ATM system at concept level, schedules implemen-
tation, test, and validation tasks for:

• Creating relationships with banks, communication companies, transaction pro-
cessing companies, and supermarket chains.

• Performing analysis of the system tier on The ATM System with focus on sub-
systems for:

• Hardware and software for capture and transmission of transactions.
• Hardware and software for diagnostics, field service, field installation, sys-

tem management, and validation of performance.
• Hardware and software for interfaces with communications, banks, and

transaction processing.
• Management of the whole ATM system business

• Recruiting, training, housing, and equipping personnel.

The plan is not just about engineering, but about implementation of the ATM
system business and validation of the work as it proceeds. At this level of understand-
ing the plan will lack detail for implementation. Much of that detail is developed in the
next tier of development, analysis of the system tier, described in the next chapter.

11.5 Summary

Performing the systems engineering at any tier is an art of finding a near optimal solu-
tion while expending as little engineering resource as possible. The modeling needs to
uncover the subtle low cost, high performance solutions. The modeling needs to help
the engineer quickly reject most of the multitude of non-optimal solutions in the
search for the low cost high performance solution that is near optimal.

11.6 Exercises

1. Write a set of requirements statements equivalent to Figure 11-10., View of Behav-
ior of the ATM System on page 246.

a. Trace these requirements to any of the eleven, 11.1 - 11.1, from Section 11.3.1,
Assess Available Information on page 232, that were identified by analyzing the
initial information and are parents for the ones you have written.
250

Concept Analysis
b. Create any needed implied requirements. These are requirements which did
not exist anywhere in the initial information and are not derived from any of
them. They have no parents.

2. Create temporal requirements for the responses of the system shown in Figure 11-
10., View of Behavior of the ATM System on page 246.

3. Assign time values to the functions in Figure 11-10., View of Behavior of the ATM
System on page 246, where that is sensible.

4. Give examples of a system and its parts at each of the tiers of design from domain
down to component.

5. Give examples of questions which are asked and answered at each level of design
for a power generation business.

6. Briefly analyze the newspaper business at the concept level. Develop structure and
FFBD diagrams. List all assumed available information.

11.7 References

Rumbaugh, James; Michael Blaha, William J. Premerlani, Frederick Eddy and Will-
iam Lorensen 1991. Object-Oriented Modeling and Design, Englewood Cliffs,
N.J.: Prentice Hall
251

Concept Analysis
252

System Analysis
System Analysis
12.1 What System Analysis Is

System analysis is the study of the subject system which will be used by a business or
businesses. The subject system may be a product, a process, a business to be re-engi-
neered, or a plan. System analysis is preceded by concept analysis which establishes
the value of features of the subject system to the business, to its owners, and to users
of the system. Based on the value of the features, concept analysis establishes the top
level behavior of the subject system. That behavior captured in a model is equivalent
to text requirements for the system. The results of concept analysis are the initial
information for system analysis.

System analysis applies the steps of the core technical process to fully define the
context of the subject system and then to decompose the system into it subsystems.
The context of each sub-system is fully defined in its structure and in the excitations
to the sub-system. The behavior of the sub-system in response to the excitations is
defined. That behavior captured in a model is equivalent to text requirements for the
sub-system.

This chapter describes system analysis by continuing the example of the ATM
system. A complete development of all of the requirements and models for all of the
sub-systems is too large for inclusion in a book and is repetitive as an example. A rep-
resentative sub-system will be analyzed in this chapter. It will be selected to represent
interesting aspects of modeling systems and to be familiar to many readers.

12.2 Core Steps Applied to the Context of the ATM System

Substantial information about the ATM system is developed in concept analysis and
passed on to system analysis. Often the context description is not complete, as in this
example. The core technical steps are applied to fully establish the context of the
ATM system and to create the plan details for decomposing the system into sub-sys-
tems.
253

System Analysis
12.2.1 Assess Available Information, Core Step 1
When a system is developed with concept analysis by one organization and system
analysis by a different organization under contract, it is essential to thoroughly assess
all of the available information. When this proceeds by legal contract, the require-
ments for the system are usually received as a large set of text statements rather than
in executable models with accompanying text.

When a large system is developed by a single organization, for example an auto-
mobile by an automaker, the information produced by concept analysis can be passed
on to system analysis in executable models with accompanying text. For large sys-
tems, the information will pass from one group to another group of people. Thorough
assessment of the models received as initial information is essential.

In this small example, the models from Chapter 11 are accepted as satisfactory
initial information. The work proceeds to the next three concurrent steps.

12.2.2 The Three Concurrent Core Steps, 2, 3, and 4
These three steps are concurrent. The step to begin with depends upon the problem
under study. If effectiveness measures and structure are well documented and behav-
ior is less complete, one may begin with analysis of behavior. In actual engineering
situations the engineer will move focus among the three steps as needed. For this
example we repeat the effectiveness measures developed in Chapter 11. and go on to
analysis of the structure of the ATM system context, which is not yet well defined.
When the structure of the context is more complete, we can select the portions that we
have space to explore in this example.

12.2.3 Effectiveness Measure For Bank with the System, Core Step 2
The initial set of six effectiveness measures, EM’s, for the ATM system are repeated
here. If others are found during modeling they will have to be added.

1. EM1. The ATM system shall maintain correct records.

2. EM2. The ATM system shall generate correct reports.

3. EM3. The ATM system shall keep information secure.

4. EM4. The ATM system shall keep money secure.

5. EM5. The ATM system shall operate at maximum benefit/total-cost to the
banks it serves.

6. EM6. Customers shall prefer to use the ATM system over the bank tellers.
254

System Analysis
12.2.4 Structure of the Context of the ATM System, Core Step 5
An initial context for the ATM system was shown in Figure 11-3., Initial Structure of
Bank Context on page 237, and was adequate for analysis of value to the bank and to
customers. It is missing a number of objects which will be essential for system analy-
sis. effectiveness measures EM3 and EM4 describe security. In the context there must
be a Thief who will steal money, a Spoofer who will alter information or commit
fraud, and organizations which will apprehend Thieves and Spoofers. Figure 12-1.,
Context of ATM System, shows the associations among these objects.

Business choices were made during Concept Analysis as to what the product
would be and what parts of the ATM system would be leased or obtained through
partnerships. Communication facilities are to be leased. Transaction processing and

Local
Communications

Long Distance
Communications

Transaction
Processing Co.

Bank MIS
Processing

Transaction
Processing Org.

Supermarket
Branch Bank

Branch
Bank

Local
Bank

Regional
Bank

National
Bank

~ 10 ~ 200 ~ 2000 - N

Bank

ATM
Customer

has accounts and
makes transactions

uses

ATM
System

support supportsupport

Thief
Spoofer

Security
defrauds

robs

catches

notifies

Leased
Communications

uses

connects to

detects

Justice
System

prosecutes

reportsbuys

1+

1+

1+

1+

1+

1+

N

Figure 12-1. Context of ATM System

connects to

connects to

robs

serves

makes queries & receives validation

se
nd

s
tr

an
sa

ct
io

ns
255

System Analysis
report generation is to be performed by the MIS departments of Banks or by transac-
tion processing companies like First Data Corp. Branch Banks may be down sized into
locations like supermarkets. The ATM vendor provides consulting to banks on bank
procedures and down sizing. If such business choices are not made during concept
analysis these objects must still be carried through the system analysis. In that case
they may be viewed as either external systems in the context or subsystems of the
ATM system with a deferred business issue identified and traced to them.

According to the figure, the ATM Customer has accounts with the bank and
makes transactions. The Customer uses the ATM System which the Bank has bought.
The ATM machine used may be local to the customers bank or located anywhere in
the world.

The ATM System uses Leased Communications to transmit and receive informa-
tion. The activity begins at an ATM machine anywhere in the world. The combination
of communication local and long distance networks used is not known, the networks
handle the addresses properly. Validation of the transaction is dealt with by queries to
an appropriate site or sites in the Bank where the bank database resides. The Leased
Communication network also connects to the Transaction Processing Organizations
which process transactions and prepare reports for Banks and ATM customers. There
are two kinds of these organizations to consider: those that are Bank MIS Processing
organizations and those that are Transaction Processing Companies. Interfaces to both
kinds will be necessary. Several subsystems of the ATM system will likely be
involved with the communication networks. It is premature to describe the ATM sys-
tem decomposition and those associations. They are deferred until context definition
is complete and the System Analysis turns to the structure of the ATM system itself.

A Spoofer, this is the established name for someone who breaks into computer
systems, defrauds the ATM system. This is detected by the Bank which reports it to
the Justice System which prosecutes the Spoofer. Note that this portion of the context
is compact. Its analysis leads to distributed computer security issues which are com-
plex and which have a profound impact on the computer, communications and soft-
ware details of the ATM system. Security is accomplished by design of the computer-
communication system, (Schiller 1994) and (Khanna 1993) and by use of encryption
(Beth 1995) and (Simmons 1992). The computer-communication system design must
also take into account issues of availability (Birman and van Renesse 1996). These
issues are best left to the expert detail designers. Only requirements for security and
availability are specified by the system analysis.

A Thief robs one or more customers or robs an ATM machine. The ATM system
notifies Security and Security catches the Thief. This is a critically important part of
the context to deal with if the system is to be acceptable to bank customers and to
banks. It is expressed in effectiveness measure EM4.
256

System Analysis
The Thief portion of the ATM system context is readily understood without spe-
cialized knowledge, and it leads to interesting modeling results. Accordingly, the
remainder of this chapter will analyze this part of the context diagram. It is often very
useful to partition large projects among teams based on loosely coupled portions of
the context diagram, and then combine the results. In this example the partitioning is
used to reduce the size of the example.

12.2.5 Effectiveness Measure for the ATM System Context, Core Step 2
The relevant effectiveness measure is EM4: the ATM system shall keep money
secure. Though true and important, it cannot be verified and is unsatisfactory until
further analysis creates derived requirements which are verifiable. The analysis con-
tinues by developing the behavior of the Thief and the ATM Customer.

12.2.6 Behavior of the Thief in the Context of the ATM System, Core Step 3
Their are two kinds of Thief, as shown in Figure 12-2., Kinds of Thief, muggers and
cabinet crackers. Each has a characteristic behavior.

A plausible behavior for the cabinet cracker is shown in Figure 12-3., Behavior
of Cabinet Cracker. We have labeled the four paths, or scenarios, through this behav-
ior.

Thief

Mugger Cabinet
Cracker

Figure 12-2. Kinds of Thief
257

System Analysis
A plausible behavior for the Mugger is shown in Figure Figure 12-4., View of
Behavior of Mugger. There are two labeled paths through this behavior.

There is a another object in the Thief portion of the context diagram, the ATM
Customer, whose behavior causes excitations of the ATM system. Figure 12-5., View
of Behavior of ATM Customer, is a plausible description.

Locate a
Machine

Visual
Sighting

Visual
Sighting
of People

Wait Until
No One
Present

Or

Carry
It Off

Break
In

Take
Money

Cut Cabinet
Open

Break Open
Door

Pick a
Lock

Flee

Money

Or Or

Or

Heat

Noise

ATM

Crack
Cabinet

Figure 12-3. Behavior of Cabinet Cracker

1

2

3

4

See Customer
Approaching

Mug Customer
With Withdrawn
Money

Mug And
Take Over
Machine

Or Or Flee

Figure 12-4. View of Behavior of Mugger

5

6

Machine
258

System Analysis
This analysis of context has been partitioned to the Thief part of the context.
The effectiveness measure, the structure and the associated behaviors have been
described. At this point no trade-off between ATM system and external objects in the
context has been found. The analysis passes over core steps 5 and 6 to examine the
responses and the structure of the ATM system. This will lead to the definition of
some of the subsystems of the ATM system.

12.3 Core Steps Applied to the ATM System

We accept the models created up to this point and pass on to the three concurrent core
steps. The first one we apply is Create the Structure Model, to create a first try at the
structure of the ATM system.

12.3.1 Structure of the ATM System, Core Step 5
This step begins with a first try at listing the sub-systems of the ATM system in Fig-
ure 12-6., Sub-systems of ATM System. The objects included will very likely be mod-
ified as a complete analysis of the ATM system proceeds.

Enter
Deposit
Information

Enter
Withdraw
Information

Make
Deposit

Take
Money

Take
Receipt

Quit or
Continue

Read
Instructions

Go to
ATM

Swipe
Card

Enter
Password

Select
Transaction

Or Or
Quit

Continue

Figure 12-5. View of Behavior of ATM Customer
259

System Analysis
First guesses are shown for the functions needed in ATM System Management,
Installation and Field Service, and Transaction Concentrator and Router. The Transac-
tion Concentrator and Router collects transactions and queries over leased local lines
from local ATM machines. It routes them to the appropriate network to get them to
local and distant banks and to the transaction processing organizations. It routes trans-
action validation back to the ATM machines. These guesses must be examined by
carefully developing the related behaviors and trying allocations onto the objects. At
this point the listing gives an idea of what the tentative sub-systems may do.

This example is concentrating on the Thief portion of the ATM system context.
The sub-system involved is the ATM Machine. For this example, then, we concentrate
on the responses of the ATM machine and its needed attributes as a result of the exci-
tations defined earlier. This is a small part of the total problem.

12.3.2 Behavior of the ATM System, Core Step 3
One possible view of the behavior of the ATM System is shown in Figure 12-7., View
of System Behavior.

ATM
Machine

ATM
System

Transaction
Concentrator

Bank
Consulting

Bank MIS
Interface

and Router

Transaction
Processor
Interface

Installation &
Field Service

Collect Transactions
Establish Routing
Acquire Network
Send Transaction
Send Queries
Receive Response
Send Response

Install Equipment
Diagnose Faults
Repair Equipment
Maintain ATM Cash
Collect Deposits

Perform Self-check
Buy Used Equipment
Sell Repaired Equipment

ATM System
Management

Hire Personnel
Manage Personnel
Train Personnel
Sell Product
Market
Receive Bills
Pay Bills
Send Invoices
Collect Payments
Manage Information
Manage Engineering
Perform Engineering
Manage Manufacturing
Perform Manufacturing
Procure Components

Schedule Services

Figure 12-6. Sub-systems of ATM System
260

System Analysis
It is the behavior of the ATM Machine sub-system that is being studied because
we have limited the scope of the example. This sub-system is interesting because the
analysis involves responses and attributes to satisfy the ATM Customer, and another
set of responses and attributes to thwart the Thief.

Responses and Attributes to Thwart the Thief
There are four scenarios for the Cabinet Cracker, Figure 12-3., Behavior of Cabinet
Cracker, and two scenarios for the Mugger, Figure 12-4., View of Behavior of Mug-
ger. We will consider them one by one.

Respond to

Repair
System

Maintain
System

Enhance
System

Keep
Money

Customer

Secure

Execute
Transaction

Manage
System

Install
System And And Dispose

of System

Keep
Information
Secure

Figure 12-7. View of System Behavior
261

System Analysis
Scenario 1

The Cabinet Cracker carries off the ATM Machine. This can be thwarted by making
the machine heavy, by bolting it to the floor, and by assuring a location so that lifting
equipment like a tow truck or fork lift cannot get close to it or get purchase on it. The
lifting force can be specified after consultation with security experts. An initial esti-
mated budget of 4000 lbs. is made here as sufficient to prevent people from removing
the ATM machine.

The attribute values are the arguments of equations associated with performance
requirements and are captured in Figure 12-8., ATM Machine.

1. Requirement: The ATM Machine shall be secured such that a 4000 lb. force is
required to remove it.

•Requirement type: Non-temporal Performance

•Attribute: Minimum Removing Force

•Associated equation: Removing force = Min Removing Force, 4000 lb.

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

2. Requirement: The ATM Machine shall be located such that lifting equipment
cannot get close or get a purchase on it.

•Requirement type: Functional

•Attribute: Protected Location True or False

•Associated equation: Protected Location = True

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by inspection

Unfortunately these derived requirements will increase cost.

ATM Machine

Min. Removing Force: 4000 lbs.
Protected Location: T

Figure 12-8. ATM Machine

Cost:
262

System Analysis
Scenario 2

The cabinet cracker cuts open the ATM machine with a torch. This can be thwarted
with a heat sensor and an alarm to the security force. If on the average it takes the
security force fifteen minutes to respond, then the ATM cabinet must withstand cut-
ting with a torch for fifteen minutes.

3. Requirement: The ATM machine shall sense heat.

•Requirement type: Functional

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

4. Requirement: The ATM machine shall send an alarm when the cabinet temper-
ature exceeds 300 degrees Fahrenheit locally

•Requirement type: Non-temporal Performance

•Attribute: Alarm Temperature 300 degrees F

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

5. Requirement: The ATM cabinet shall withstand cutting with an oxy-acetylene
torch for fifteen minutes or longer.

•Requirement type: Temporal Performance

•Attribute: Min. Cabinet Cutting Duration 15 minutes

•Traceability: The requirement traces to effectiveness measure EM4.

•Traceability: The time budget traces to function Cut Cabinet Open

•Validation: Validated by measurement

Scenario 3

The cabinet cracker picks the lock. This can be thwarted by sensing the vibrations of
picking the lock with a sensor and an alarm to the security force.

6. Requirement: The ATM cabinet shall withstand picking the lock by a trained
locksmith for fifteen minutes or longer.

•Requirement type: Temporal Performance

•Attribute: Min. Lock Pick Duration 15 minutes

•Traceability: The requirement traces to effectiveness measure EM4.

•Traceability: The time budget traces to function Pick a Lock

•Validation: Validated by measurement
263

System Analysis
Scenario

The Cabinet cracker breaks open the door with clamps, drills, punches, or saws.
7. Requirement: The ATM cabinet shall withstand breaking the door by a trained

locksmith for fifteen minutes or longer.

•Requirement type: Temporal Performance

•Attribute: Min. Door Break Duration 15 minutes

•Traceability: The requirement traces to effectiveness measure EM4.

•Traceability: The time budget traces to function Break Open

•Validation: Validated by measurement

Scenarios 3, and 4

8. Requirement: The ATM machine shall sense vibration.

•Requirement type: Functional

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by inspection

9. Requirement: The ATM machine shall send an alarm when the detected vibra-
tion level exceeds TBD.

•Requirement type: Non-temporal Performance

•Attribute: Alarm Vibration Level TBD

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

Scenarios 1,2,3, and 4

For all of the scenarios it is necessary to notify security. The alarm needs to occur
whether thieves attempt to cut the signal or to replace it with a generated signal.

10. Requirement: The ATM machine shall send a tamper proof alarm to Security to
notify that a theft is in progress when heat or vibration is detected.

•Requirement type: Functional

•Traceability: The requirement traces to effectiveness measure EM4.

•Validation: Validated by measurement

The attributes and the functions developed are collected in the graphic descrip-
tion Figure 12-9., ATM Machine Revised.
264

System Analysis
Though this specification for the ATM machine can be implemented, everything
added for security is contributing to cost. It is certainly a candidate for trade-off
against lower cost solutions or against accepting higher risk of theft.

Scenarios 5 and 6

These are the scenarios for the Mugger. For these scenarios the important effective-
ness measures are EM4. used above and EM6: customers shall prefer to use the ATM
system over the bank tellers. Customers will not use ATM machines unless they feel
safe from muggers. In these scenarios the Mugger sees an ATM customer using a
machine and either takes the withdrawn from her, or the Mugger takes over the
machine and withdraws money. In either case the ATM Customer is threatened with
violence and may be injured. Cameras and emergency buttons can be built into the
machines. However, these devices will only ensure that help arrives more quickly to
take the patron to a hospital. There is nothing that can be built into the ATM Machine
itself to prevent mugging.

12.3.3 Structure Implications of the Theft Scenarios, Core Step 4
The machines can be placed in safe locations which are know to be free of mugging
incidents. This suggests thinking about all of the possible kinds of secure locations.
Figure Figure 12-10., Classification of Secure Locations shows the result of such cre-
ative thinking. Modeling only captures the results of the thinking.

ATM Machine

Min. Lifting Force: 4000 lbs.
Protected Location: T
Alarm Temperature: 300 degrees F
Min. Cabinet Cutting Duration: 15 minutes
Min. Lock Pick Duration: 15 minutes
Min. Door Break Duration: 15 minutes
Alarm Vibration Level: TBD

Sense Heat
Sense Vibration
Send Alarm to Security

Cost

Figure 12-9. ATM Machine Revised
265

System Analysis
In the context of ATM system there are locations which can be used to house the ATM
machines and provide them with electric power and connection to communications.
Some locations are secure and some insecure. For any given location this can be estab-
lished by survey of people who are familiar with the locations. Among the secure
locations there are two very interesting kinds:

1. Locations that have a cashier and cash present

2. Locations that do not have cash and a cashier present

If cash and a cashier are already present, then it is not necessary for the ATM
machine to dispense money. Instead it can dispense a receipt for which the cashier
gives the ATM Customer the money. In some cities and areas there may be no loca-
tions with these characteristics. In some cities and areas retail stores, drug stores and
convenience stores can serve this function.

This alternative is different kind of allocation of behavior than has been
described before in this example. It is an allocation of the function “dispense money”
away from the ATM system and into the external objects in the context. In Figure 11-
11., Kinds of ATM Machines on page 248, the assumption was made that all of the
ATM machines would dispense money withdrawn from either checking or savings
accounts. This allocation into the context totally relieves the ATM system for respon-
sibility for the physical security of the money and risk to the customer. It also drasti-
cally reduces the cost of the ATM machine which now does not need a money
dispenser, protection from theft, or a repository for deposits. Deposits can be left with
the cashier.

Many potential retail locations of this type are located close to the ATM custom-
ers and these retailers benefit from customers with money in their stores at their cash
registers. For this solution to the system problem there are a few additional consider-

Insecure

No Cashier With
Cash Present

Cashier With
Cash Present

Secure

Location
(External
System)

Figure 12-10. Classification of Secure Loca-
266

System Analysis
ations. It is necessary to print a random number on the receipt and to display that
number at the register so that fraudulent receipts cannot be presented. It is necessary
to arrange for the transaction to be cancelled if the retail store is temporarily short of
funds and cannot honor the receipt. These restrictions can be readily incorporated into
the requirements and represented in the models. These considerations cause a redefi-
nition of the types of ATM Machines, shown in Figure 12-11., Kinds of ATM
Machines, Modified.

The parent class, ATM Machine, shows all the functions common to the ATM
machines and the cost of these capabilities.

ATM Machine
Total Withdraw Cost

Money Dispensing Machine

Execute Withdraw form Checking
Execute Withdraw from Savings

Money & Deposit Machine
Total Dispense & Deposit Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment

Bank Transaction Machine
Total Transactions Cost

Execute Apply for Account
Execute Borrow Money
Execute Make Investment
Execute Sell Investment
Execute Cash Savings Bonds
Execute Wire Funds
Execute Get Cashier Check
Execute Get Money Order
Execute Get Investment Data

Figure 12-11. Kinds of ATM Machines, Modified

Dispense Receipt

Accept & Store Deposits

Dispense Money

Total Dispense Cost

Receipt Only Machine
Total Receipt Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment
Print Random No. on Receipt
Display No. @ Cashier
Cancel Transaction

Store Location

Supply Power
Supply Communication Port
Accept & Store Deposit
Dispense Money
Cancel Random No. @ Cashier
Cancel Transaction

located in

1+

Read ATM Card
Read Pin Number
Validate Transaction

Theft Protected: Y/N, Cost

Theft Protected: Y/N, Cost
267

System Analysis
 The Money & Deposit Machine dispenses money and stores deposits. It may or
may not be protected for theft, depending on location. When these machines are
located inside bank lobbies they do not require the protection of machines located out-
side or in unsafe buildings.

The Receipt Only Machine provides all of the functions of the Money and
Deposit Machine because of the cooperative arrangement with the Store Location. An
element left unclear is whether the transport of deposits from store to bank will be
done by the ATM Installation and Field Service sub-system or by the Store when store
receipts are taken to the bank. That issue is flagged but not analyzed until Installation
and Field Service and associated behaviors are analyzed.

The Money Dispensing Machine does not have a repository for deposits. It may
or may not be protected from theft, depending on location.

The Bank Transaction Machine is a customer workstation for bank transactions
of all kinds. When a business like this is starting, the Bank Transaction Machine is a
future release. Such releases often need a trial in a bank to prove their effectiveness.
The cost effectiveness is not clear from the analysis of benefit to the bank. Widespread
introduction may await introduction and acceptance of electronic banking.

Clearly this is a product line of ATM machines. The alternatives provide a basis
for consulting with banks not only on their internal procedures, but also on tailoring
the distribution of ATM machines and types to the communities and customer popula-
tions they serve. Ability to locate low cost Receipt Only Machines in cooperating
stores can be an asset for the ATM system vendor with appropriate business relation-
ships with store chains.

All of these results are the result of analyzing responses to the Thief. The
responses of the ATM machine to the ATM customer are described next.

12.3.4 Response of ATM Machine to ATM Customer
The behavior of the ATM Machine is a response to the behavior of the ATM Cus-
tomer, Figure 12-5., View of Behavior of ATM Customer. Within that response are
some issues that transcend the ATM Machine sub-system and the theft scenarios. The
ATM Machine is involved in the validation of the transactions to ensure that the card
and password are valid and that accounts have funds adequate for withdrawal. The
actual validation can take place in the ATM Machine or in a remote location. These
alternatives affect the amount of time the Customer must wait for validation, the
amount of use of communications, and the security of the information. Validation
involves the Spoofer and the Network portions of the context diagram. The validation
issues need to be examined from all of these perspectives. For brevity this example
will only consider the problem from the standpoint of the ATM Customer and the
ATM Machine, which are parts of the Theft portion of the context under study for the
example.
268

System Analysis
Figure 12-12., Behavior of ATM Machine, shows a plausible response to the
ATM Customer.

.

When the ATM machine is turned on it first Initializes. It then displays start
instructions for the Customer. When the Card is swiped by the Customer the ATM
Machine reads the card. It the reading produces good data, the behavior continues. If
the data is bad, the ATM machine displays a message to re-swipe the card. When
good data is obtained it prompts the user for password information. A password is
entered by the customer and captured. The password can be quickly checked locally

Display Start
Instructions

Initialize
ATM

Read
Card

Validate
Data

Display
Password

Print
Receipt

Validate
Transaction

Capture
Password

Display
Re-swipe
Instruction

good

bad

Instruction

Request
Validation
& Account

Display
Transaction
Selection

Information

Receive
Validation
& Account

Capture
Transaction
Selection

Information

Prompt
Additional
Info

And

Complete
Transaction

Display
Completion
Information

Receive
Completion
Choices

stop

Display
Re-peat
Password

bad

good

Card Password

Request

Choices

Figure 12-12. Behavior of ATM Machine

bad

Receipt

Account
Validated

yes

no

Requested
Information

And

Selection

Capture
Additional
Info

Additional
Info

continue

good
269

System Analysis
with a check sum if the card number and password have been properly established. If
the password is bad, the ATM Machine displays a repeat password message. If it is
good the behavior continues with two concurrent branches.

On the upper branch the ATM Machine requests information over the network
for password verification, card verification, and account balances. There will be a time
lag after which the requested information is received by the ATM Machine. During
this time lag activity proceeds along the lower branch. The transaction selection is dis-
played to the customer. The customer selects a transaction type. The selection of trans-
action amount is displayed and the Customer inputs the amount chosen. The
overlapping of the two branches minimizes waiting time for the customer. Requesting
and receiving the information needed concerning the card, password, and account bal-
ances in a single burst minimizes both time delay and communication use. However,
for security reasons it may be undesirable to transmit account information back to the
ATM Machine.

When both branches are complete there is enough information to Validate the
transaction. If the transaction is approved the process continues. If not, it cycles back
to the front of the two branches to attempt to match a transaction against the accounts.

If the transaction was allowed, a receipt for the transaction is printed. If the
machine is of the Receipt Only type the receipt is taken to the cashier who matches the
printed random number against the displayed number at the register. The cashier pays
the withdrawn amount and enters the completion choices of completed and stop. The
ATM Machine signals a completed transaction to the system If the cashier is out of
cash and cannot honor the receipt, he enters not completed and stop. The transaction is
aborted and not recorded by the system.

If the ATM Machine is of the other types, then the ATM customer enters her
completion choices and may stop or continue with additional transactions. When fin-
ished, the stop command is entered and the ATM machine displays the start instruc-
tions.

The plausible behavior just described has considered only a few of the anoma-
lous conditions that can occur. Each step in the behavior needs to be examined for
desired behavior of the ATM machine under all possible conditions (Carson 1995).
For example, what happens at any step if the customer walks away from the machine?
Does it time out and return to displaying start instructions. What happens at any point
if the ATM customer wants to quit or back up to a previous step?

Each of the steps requires further detailed design of the displays to be presented
and the data to be processed. These details are developed as the ATM Machine is bro-
ken into its components. There are three kinds of ATM machines to consider: Receipt
Only, Money Dispensing, and Money and Deposit machines. It would be useful to
develop them so that they share and reuse a maximum number of parts.
270

System Analysis
12.3.5 Structure of the ATM Machine and Related Objects, Core Step 5
The development of behaviors has introduced a number of additional objects

which are not a part of the ATM Machine, but are associated with it. Figure 12-13.,
Associations with ATM Machine, shows these associations Models like this figure
treat all of the objects on an equal footing in showing the relationships among them.
They are particularly useful in organizing information about the system because
information about each of these objects may be important to record. They are often
referred to as information models.

.

uses

accepts/

Account

ATM

dispenses

produces

enters

Cash from

transports

ATM
Network

International
Network

Message

describes
records

contains

Bank
Network

connects
Bank
Computer

Bank
Database

reads/writes

gets

withdraws

ATM

Receipt

generates

Replies

Network

receives

sends

defines captures

ATM Machine

has

Password
requests

reads

Deposit tomakes stores

Request

makes

Location

draws

Information Display
createsreads

Figure 12-13. Associations with ATM Machine

receives

Money
Supply

Bank

provides

uses

rejectsaccess

Card

issues

Account

Account

support
from

Instruction
follows

Customer

Transactions

ATM Datastores
271

System Analysis
This representation asserts that the ATM customer has accounts, defines transac-
tions, uses an ATM card issued by the bank, enters instructions, requests access with a
password, gets receipts, withdraws cash from an account, makes deposits to an
account, and reads information displays. It asserts that the ATM System uses the
money supply provided by the bank, reads the ATM card, follows the instructions,
accepts or rejects the password, produces receipts, dispenses cash from an account,
stores deposits to an account, creates information displays, draws support from a loca-
tion, receives replies, makes requests, captures transactions, and generates messages
describing the transactions.

The figure asserts that a network transports messages, receives requests, and
sends replies. Because we do not know the structure of the network, It asserts that
there are three inclusive classes of networks: ATM Network, International Network,
and Bank Network. The Bank Network connects to an appropriate bank computer
which reads and writes to a bank database which contains accounts in which are
recorded the account transactions. The bank database and also stores ATM data
including the information needed for validating card numbers and passwords. The
physical locations and structure of the computers, networks, and data storage media
are in general not known. Their identities and routing addresses are known or are
found by reading appropriate files.

Models such as this are very useful in defining all of the objects with which the
ATM Machine interfaces. When database engineers are organizing the information
that describes all of the objects in the system, the information models provide a basis
for organization of the data. When created with an executable notation, database
schema can be generated from the information models. This is one of the intimate
relationships between the detailed description of the system needed for specification
and database development.

This example has examined only one of the several subsystems of the ATM sys-
tem. Some of these other sub-systems, especially Installation and Field Service will
interface with the ATM machines and have a major impact on their operating cost.
That information comes from study of the other sub-systems and can be included in
the models when it is available.

12.4 Exercises

1. Create a behavior for the ATM Machine in response to the scenarios for the Thief.

2. Create a behavior for the response of Security to an alarm from the ATM Machine.

3. Link the composite behavior of Thief with the behaviors of the ATM Machine and
Security. Create a time line for the interaction of the three objects.

4. Define a behavior for Installation and Field Service that will:

a. Install the machines
272

System Analysis
b. Supply money to ATM Machines

c. Retrieve deposits from ATM Machines

d. Respond to out- of - service calls

e. Proactively test ATM Machines using remote diagnostics

f. Service broken ATM Machines

g. Repair and sell ATM Machines

h. Estimate the cost per machine for these services

i. Schedule installation and field service

5. Estimate the cost to provide each service

6. Make a rough estimate of the cost of manufacturing each of the three kinds of
ATM Machines. Add the cost of the services required for each kind of machine.

7. For a local bank with twenty branches decide what numbers of the different kinds
of ATM machines you would distribute in the community. What assumptions do
you have to make?

8. Think of a set of rules or an algorithm for locating ATM machines.

9. Develop a system level analysis of an electronic cash register.

10. What is the output of system level analysis? What questions does it answer?

12.5 References

Beth, Thomas. 1995. Confidential communication on the internet. Scientific Ameri-
can. Dec. 88-91

Birman, Kenneth P. and van Renesse, Robert. 1996. Software for reliable networks.
Scientific American. May. 64-69

Carson, Ronald S. 1995. A set theory model for anomaly handling in system require-
ments analysis. Fifth Annual International Symposium of the National Council
on Systems Engineering 1: 515-522.

Khanna, Raman. 1993. Distributed computing, Implementation and management
strategies. Englewood Cliffs, N.J.: Prentice Hall

Schiller, Jeffrey I. 1994. Secure distributed computing. Scientific American. Nov. 72-
76

 Simmons, Gusavus J. 1992. Contemporary Cryptology: State of the art and future
directions. IEEE Press
273

System Analysis
274

Sub-system Analysis
Sub-system Analysis
13.1 What Sub-system Analysis Is

Sub-system Analysis is the study of the sub-systems of the subject system which will
be used by a business or businesses. The sub-system may have its own effectiveness
measures, design constraints, and architecture which differ from those of the system.
Sub-system Analysis is preceded by analysis of the system tier from which it receives
the context for each sub-system. The structure model of the context describes all of
the objects with interfaces to the sub-system. The behavior models for the context
describe the behaviors of all the objects with interfaces to the sub-system. A behavior
model for the sub-system describes how it responds to the excitations it receives from
the objects in its context.

Sub-system Analysis applies the core technical steps to review and validate the
context information received from analysis of the system tier. This review is needed
to find and correct errors and missing information in the models received. It is neces-
sary for large systems because it will decompose into six or more sub-systems with an
engineering team assigned to each sub-system. These teams need to review and apply
their collective experience to refine the models developed by the analysis of the sys-
tem tier team. Since the sub-systems interact, the teams need to review with one
another the interactions among their subsystems.

When the context models have been corrected and accepted, each team applies
the core technical steps to its sub-system. Each sub-system is decomposed into its
components by allocating the behavior of the sub-system onto trial sets of compo-
nents. This process defines the context of the component statically and dynamically.
The behavior of each component is refined as a response to all of the excitations it
receives.

This chapter describes Sub-system Analysis by continuing the example of the
ATM system. A complete development of all of the requirements and models for all
of the sub-systems is too large for inclusion in a book and is repetitive as an example.
Analysis of the ATM Machine will be continue in this chapter. The analysis will be
carried to the specification of the components.
275

Sub-system Analysis
13.2 Core Steps Applied to the Context of the ATM Machine

Substantial information about the ATM machine was developed in analysis of the sys-
tem tier in Chapters 11 and 12. and is accepted for use here. However, only one part of
the system context was explored during analysis of the system tier so that the only
sub-system definitions and models that emerged were for the ATM Machine. Models
for the response of the ATM Machine to the Thief were left as an exercise for the
reader as was the behavior of Security. The impact of analysis of the Installation and
Field Service sub-system was left as an exercise. Models are presented here for
response to the Thief, behavior of Security, and impact of analysis of field service on
the ATM Machine. This is done without performing analysis or trade-off to optimize
the content of the models.

Overall View of System Behavior
Figure 13-1., View of System Behavior defines top level behavior.

Invite

Repair
System

Maintain
System

Enhance
System

Keep
Money

Transaction

Secure

Execute
Transaction

Manage
System

Install
System And And Dispose

of System

Keep
Information
Secure

Figure 13-1. View of System Behavior
276

Sub-system Analysis
Response to Thief
Figure 13-2., View of Response of ATM Machine to Thief, is a view of the ATM
Machine behavior in response to the Thief Scenarios. Details of the tamper proof
alarm signalling are contained in the function Send Alarm and require detailed
design.

Impact of Installation and Field Service
Results are assumed here for the analysis of installation and field service without
going through analysis of the system tier and trade-off. They may or may not be near
optimal. The distribution of machines locally is assumed to be:

• Three Money and Deposit Machines with alarms in the drive through outside
the Local Bank; and one outside each of two Branch Banks. Five total.

• One Money and Deposit Machine without alarm and protection inside the
Local Bank, the two Branch Banks, and the eight Supermarket Banks. Eleven
total.

• One hundred Receipt Only Machines in 100 Convenient Store locations serv-
ing the local area. One hundred total.

With this distribution collection of deposits, supply of money, and supply of tape for
the printers is handled by regular bank personnel and convenient store personnel.
Installation and Field Service is organized regionally with responsibility for about
2000 machines for the 10 local banks in the region. Mean time between failures,
MTBF, is required to be:

• Receipt Only Machines, MTBF = 5 year/failure, 400 failures/yr. regionally

• Money and Deposit Machines, both kinds, MTBF = 1.0 year/failure. 150 fail-
ures/yr. regionally

Sense
Heat

Send
Alarm

Keep
Money
Secure

Heat

Noise

Alarm

And

Sense
Noise

Figure 13-2. View of Response of ATM Machine to Thief

And
277

Sub-system Analysis
The cash dispenser is expected to be both expensive and less reliable than many
of the other components, so MTBF is less for the Money and Deposit Machine than
for the Receipt Only Machine. The failures are evaluated with remote execution of
diagnostics. Failures of the Receipt Only Machine are serviced by having regular bank
personnel replace the entire unit and by initializing and validating its performance
remotely over the network. For each region two service persons handle the failures.
Such procedures limit field service personnel to about 20 persons for the system. Only
when the impact of a service structure such as this has been considered, can the oper-
ating cost of the different machines be ascertained. As the machine reliability goes up
the cost of servicing goes down but cost of manufacture goes up. A full trade-off of
theses alternatives is required in analysis of the system tier. The solution above is
applied in this chapter. It provides operating cost information for the ATM Machines
and sets goals for their MTBF and reliability. For a thorough discussion of MTBF,
reliability, availability, and for specifying all reliability concerns a good text on that
subject should be consulted (Blanchard and Fabrycky 1990, Chapter 13).

13.3 Core Steps Applied to the ATM Machine

13.3.1 Effectiveness Measure for the ATM machine, Core Step 2
The initial set of six effectiveness measures, EM’s, for the ATM system are repeated
here. If others are found during modeling they will have to be added.

1. EM1. The ATM system shall maintain correct records.

2. EM2. The ATM system shall generate correct reports. EM1. and EM2. require
that the ATM Machine shall:

 Interpret instructions correctly

 Read cards correctly

 Request information correctly

 Interpret replies correctly

 Validate passwords correctly

 Validate transactions correctly

 Reject bad data

 Continue properly after receiving bad data

3. EM3. The ATM system shall keep information secure.

The analysis of the system tier to apply EM3. to the ATM Machine has not been car-
ried out in the example. There is insufficient information to apply EM3.

4. EM4. The ATM system shall keep money secure. EM4. applies directly to the
ATM Machine
278

Sub-system Analysis
5. EM5. The ATM system shall operate at maximum benefit/total-cost to the
banks it serves. Some guesses about Installation and Field Service have been
made to provide rough guidance in operating cost and ATM Machine MTBF.

6. EM6. Customers shall prefer to use the ATM system over the bank tellers.

Based on system considerations, machines have been located for customer conve-
nience. Locations have been selected to allay anxiety over personal safety. MTBF has
been made sufficiently long that a customer should experience no machines out of
order in more than a year of using near by machines.

Ease of use and understanding must be designed into the ATM Machine. This
design work is an engineering discipline, generally called Design for Manability and
Human Factors Analysis. Good discussions of the discipline are available, (Blan-
chard and Fabrycky 1990, Chapter 15) and (Woodson 1981). The ultimate issue is not
the design, but the evaluation of the design by users. This can be done with a proto-
type and a users survey with the prototype. When the specifications are captured in
executable models, the prototype can be rapidly generated by automatically trans-
forming the specifications into code and adding the details, like screen layouts, which
were deferred to the designers. A set of criteria, like those below, are needed to evalu-
ate user reaction to the prototype.

• Based on a valid survey 80% of participants on their first use shall:

• Find the information displays self explanatory
• Follow the sequence of user actions successfully
• Make their choices without error
• Complete their transactions
• Express satisfaction in using the ATM machine

This is a specific example of early build and validate.

13.3.2 Structure of the ATM Machines, Core Step 5
It is not a single ATM Machine under study, but a family of them. The decomposition
of the machines into their components is needed. In addition there will be associa-
tions among the family members that show how parts are reused among them. These
are the associations that will cause the designers to ensure parts are designed for
reuse.

There are four basic ATM machines under consideration and two of these may
be either designed for theft protection or not, yielding six kinds of machines as shown
in Figure 13-3., Kinds of ATM Machines, Modified. Protection attributes and func-
tions are shown through multiple inheritance using the Protected ATM Machine class.
279

Sub-system Analysis
.

There is an equation for the cost of any of these machines:

ATM Machine
Total Withdraw Cost

Money Dispensing Machine

Execute Withdraw form Checking
Execute Withdraw from Savings

Money & Deposit Machine
Total Dispense & Deposit Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment

Bank Transaction Machine
Total Transactions Cost

Execute Apply for Account
Execute Borrow Money
Execute Make Investment
Execute Sell Investment
Execute Cash Savings Bonds
Execute Wire Funds
Execute Get Cashier Check
Execute Get Money Order
Execute Get Investment Data

Dispense Receipt

Accept & Store Deposits

Dispense Money

Total Dispense Cost
Receipt Only Machine
Total Receipt Cost

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment
Print Random No. on Receipt
Display No. @ Cashier
Cancel Transaction

Store Location

Supply Power
Supply Communication Port
Accept & Store Deposit
Dispense Money
Cancel Random No. @ Cashier
Cancel Transaction

located in

1+

Read ATM Card
Read Pin Number
Validate Transaction

Theft Protected: Y/N

Theft Protected: Y/N

Protected ATM Machine

Protection Cost:
Min. Lifting Force: 4000 lbs.
Alarm Temperature: 300 degrees F
Min. Cabinet Cutting Duration: 15 minutes
Min. Lock Pick Duration: 15 minutes
Min. Door Break Duration: 15 minutes
Alarm Vibration Level: TBD

Sense Heat
Sense Vibration
Send Alarm to Security

Figure 13-3. Kinds of ATM Machines, Modified

Cost/Payment:
280

Sub-system Analysis
• Total cost = withdrawal cost + installation cost + servicing cost + maintenance
cost + manufacturing cost + operating cost + security cost +/- location cost/
payment.

A cost/payment attribute has been associated with the Store Location. Having
store locations for receipt on ATM machines is a matter of a business arrangement
with chains of stores like convenience stores. The work to negotiate such agreements
is planned and scheduled in the Build and Test Plan. The negotiation may result in
rental payments to the convenient store chain, or in payments by the store chain to the
bank for having the attraction of banking in its stores. This part of the planning would
normally be developed during Concept Analysis, the discussion of Chapter 11. As
this example has been developed, the opportunity for supplying Receipt Only ATM
machines is not discovered until later, during sub-analysis of the system tier. It
becomes an issue requiring resolution by revisiting the Build and Test Plan developed
in Concept Analysis and modifying the implementation planning from those earlier
steps to include development of new business relationships, implementation of an
unanticipated class of machine, and modification to field service plans and imple-
mentation. This is an example which requires change control as discoveries are made
during engineering to synchronize the planned ongoing work with the impact of the
discovery.

Figure 13-4., ATM Machines, Parts List and Associations, shows the composi-
tion of the machines and how they are interrelated for reuse of parts and field service.
The Receipt Only Machine is built from a Receipt Machine LRU, Least Replaceable
Unit, and a Cashier Display LRU. If one of these machines fails, the LRU’s are what
is replaced in the convenience store, as a unit. All of the other four kinds of ATM
machines use the Receipt Machine LRU, secured into their cabinets, for display, com-
putation, network interface, receipt printing, and diagnostics. This minimizes stock-
ing of different parts, and maximizes production runs. Each of the machines has its
own cabinet; the cabinet classes are shown with light shading. The cabinets for the
theft protected machines will be expensive and used only where necessary. All four
machines that dispense money use the same Money Dispenser LRU. In Figure 12.4
that class is shown twice and is shaded dark so that the reader does not have to deal
with lines crossing in the figure. (Some tools do not allow the repetition of a class this
way and the tool tracks crossing association connections without confusion). The pro-
tected machines use the same Theft Correction LRU.
281

Sub-system Analysis
The Receipt Machine LRU, which is used in all of the kinds of ATM Machines,
is built from a power supply, network interface, card reader, circuit board, display unit,
printer and cabinet. These seven items are second level LRU’s. They are replacement
units when a Receipt Machine LRU is taken to a repair facility for repair. The circuit
board, cabinet, and software will likely require engineering development. The other
items can likely be procured from suppliers. The display/input unit may have to be tai-
lored to this product by a vendor. The aggregations in Figure 13-4., ATM Machines,
Parts List and Associations, capture not only the parts lists for each kind of ATM
Machine, but also the reuse architecture of the products. The models capture the engi-
neering creativity in finding a good reuse architecture.

Receipt OnlyMoney DispensingDeposit & MoneyMoney Dispensing
Protected

Deposit & Money
Protected

MachineMachineMachineMachine Machine

Machine
Receipt

LRU

Display
Cashier

LRU
Dispenser
Protected

Cabinet
LRU

Deposit
Protected

Cabinet
LRU

Cabinet
Dispenser

LRU
Dispenser

Money

LRU
Dispenser

Money

LRU

Cabinet
Receipt

2nd LRU
Input

Display

2nd LRU

Printer
2nd LRUBoard

Circuit

2nd LRU

Power Supply
Uninterruptible

2nd LRU
Reader
Card

2nd LRU

Interface
Network

2nd LRU

Computer Software

runs on

Cabinet
Deposit

LRU

LRU = Least Replaceable Unit

Figure 13-4. ATM Machines, Parts List and Associa-

Protection
Theft

LRU
282

Sub-system Analysis
Both protected machines use the same Theft Protection LRU shown in Figure
13-5., Theft Protection LRU. The network control and alarm generation are handled
by the Receipt Machine Circuit Board which contains the computer and software.
Much of the system complexity and response behavior to both the Thief and the ATM
Customer is captured in the software.

Attributes and Allocation of Behavior
The parts list needs to be augmented with attribute values, and with interconnection
diagrams. The attributes are examined first at 2nd LRU level, LRU level, and then at
ATM Receipt Machine level. A reasonable set of values are given for cost and for
MTBF design goals.

The behavior of the ATM Receipt Machine is allocated to the parts. Figure 13-
6., The Components as Objects with Attributes and Functions, shows the components
with their attribute values, design goals at this stage, and functions. Based on the cost
attributes the Receipt Machine has a cost goal of $1030.

Detector
Heat

2nd LRU

Protection
Theft

LRU

Detector
Noise

2nd LRU
Signal
Analog

Conditioning
2nd LRU

Figure 13-5. Theft Protection LRU
283

Sub-system Analysis
.

The Receipt Machine fails if any of these components fails. Under these condi-
tions the reciprocal of the total MTBF is equal to the sum of the reciprocal MTBF’s of
the components. (Blanchard and Fabrycky 1990, 355) The Receipt Machine MTBF is
5.6 years. The MTBF’s assumed are quite long and would require conservatively
designed integrated circuits, very high quality electrical connectors on the cabinet, and
a very high quality printer. Printer life in years is dependent on the number of receipts
printed in that time because failure is a result of mechanical wear. The assumption

Network Interface
Cost: $30
MTBF: 50 yr.
Provide Protocol

Card Reader
Cost: $75
MTBF: 50yr
Read Card

Display/Input
Cost: $200
MTBF: 50yr.
Display Start Instruction

Printer
Cost: $150
MTBF: 25yr.
Print Receipt

Receipt Cabinet
Cost: $75
MTBF: 25yr.
House Components
Connect Electrical Components

Circuit Board
Cost: $400
MTBF: 50 yr.

Uninterruptible Power Supply
Cost: $100
MTBF: 50yr.
Provide Electric Power

Initialize ATM
Generate Start Instruction
Accept Card Data
Validate Card Data
Generate Re-swipe Instruction
Generate Password Instruction
Accept Password
Validate Password
Generate Repeat Password Instruction
Generate Transaction Selection
Accept Transaction Selection
Generate Amount Selection
Accept Amount Selection
Request Validation & Account Information
Receive Validation & Account Information
Validate Transaction
Generate Receipt Information

Accept Completion Choices
Complete Transaction
Return to Generate Start Instruction
Return to Display Transaction Selection
Check Alarm Threshold
Generate Alarm

Display Re-swipe Instruction
Display Password Instruction
Display Repeat Password Instruction
Display Transaction Selection Instruction
Display Amount Selection Instruction

Generate Completion Information

Display Completion Information

Figure 13-6. The Components as Objects with Attributes and Func-
284

Sub-system Analysis
above corresponds to about a million receipts between failures. The number of field
service personnel and the cost of field service are predicated on the machine reliabil-
ity.

Figure 13-7., LRU Objects, shows the functions and attributes of the Least
Replaceable Units.

.

The attributes simply sum up the parts tree. The cost to manufacture adds. MTBF fol-
lows a sum of reciprocals law. When the parts tree is captured in a tool, the summa-
tions readily automated. This can be done with a modeling tool that captures all of the
models or with a spread sheet.

When the attributes are summed to the ATM Machines the results of Figure 13-
8., The Five ATM Machines, are obtained

Protected Dispenser Cabinet
Cost: $6000
MTBF: 25yr.
House Components
Connect Electrical Components

Protected Deposit Cabinet
Cost: $6500
MTBF: 25yr.
House Components
Connect Electrical Components

Dispenser Cabinet
Cost: $1200
MTBF: 25yr.
House Components
Connect Electrical Components

Deposit Cabinet
Cost: $1600
MTBF: 25yr.
House Components
Connect Electrical Components

Money Dispenser
Cost: $2000
MTBF: 3yr.
Dispense Money

Theft Protection
Cost: $300
MTBF: 5yr.
Sense Noise
Sense Vibration

Cashier Display
Cost: $70
MTBF: 50yr.
Display Number
OK Transaction

Figure 13-7. LRU Objects
285

Sub-system Analysis
.

Hardware Interconnection
When the behavior has been defined as done here, the allocation of functions to com-
ponents establishes many of the interconnections, those between active objects that
exchange input/outputs. Figure 13-9., Interconnection Diagram, shows the interfaces.

Money DispensingDeposit & MoneyMoney Dispensing
Protected

Deposit & Money
Protected

MachineMachineMachineMachine

Mfg. Cost; $9,330
MTBF: 1.3yr.

Mfg. Cost: $9830
MTBF: 1.3yr.

Mfg. Cost: $4630
MTBF: 1.8yr.

Mfg. Cost: $4230
MTBF: 1.8yr.

Dispensing
Receipt

Machine

Mfg. Cost; $1.100
MTBF: 5.1yr.

Figure 13-8. The Five ATM Machines

Cabinet
Receipt

2nd LRU

Input
Display

2nd LRU

Printer
2nd LRU

Board
Circuit

2nd LRU

Power Supply
Uninterruptible

2nd LRU

Reader
Card

2nd LRU
Interface
Network

2nd LRU

controls

powers

powers
powerspowers

powers

controls controls

controls

cabinet connects physically
to all the other LRU’s

Figure 13-9. Interconnection Diagram
286

Sub-system Analysis
Software Components
The software components are developed in the next chapter as an example of the
hand-off from systems engineering to software engineering and the design of compo-
nents based on system models. A hand-off of this nature may occur in any of the tiers
of development when a system, subsystem, or component is to be supplied by a busi-
ness partner or a supplier company.

13.4 Exercises

1. Analyze installation and field service for the ATM Machines

a. Apply the six core steps to the analysis

b. Compare results with the assumed results in Chapter 13.

2. Model the subsystems of a computer

a. are these all produced by a single vendor?

b. which systems will be designed more fully by the computer manufacturer?
Why?

3. Model the subsystems of a hospital and their relationship to each other.

4. Consider a communications systems provider. Is the information needed by the
provider about a satellite the same as the information needed by the satellite manu-
facturer?

5. In what roles is a satellite viewed by

a. antenna designers

b. communications vendors

c. rocket launchers

d. the military

e. satellite manufacturers

13.5 References

Blanchard, BF and Fabrycky, W. 1990. Systems Engineering and Analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Woodson, E.W. 1981. Human Factors Design Handbook. New York: McGraw Hill
287

Sub-system Analysis
288

Hand-off
Hand-off
14.1 What Hand-off Is

The hand-off is the transition between the system design work and the design work
performed by individual engineering disciplines, or by suppliers. The systems engi-
neering information, specification, developed at the higher tiers must be delivered to
the specialty engineers in an rigorous and understandable format. The disciplines
must also be able to feed information back into the systems engineering domain so
that estimates of total system performance can be refined as parts of the design are
worked through to implementation

Within the design process for large systems hand-off occurs at different tiers of
hierarchy. Business rarely decides to attempt to develop all of the components of a
major system. Out sourcing is a prominent aspect of modern system development.
Instead businesses choose certain aspects of the system design in which they will spe-
cialize. These aspects of the system design will be pursued further than those aspects
which are contracted to suppliers, purchased from vendors or provided by business
partners. It may be a system, subsystem or component that is developed and supplied
externally. The outside vendors, suppliers, and partners need to do the same rigorous
engineering as the initiating engineering organization, but they receive system engi-
neering information and specifications as a hand-off from the initiating engineering
organization.

Considering the case of the ATM system, many of the hardware elements are
likely to be sourced from external vendors. It would be unrealistic to assume that the
display unit LRU or the uninterruptible power supply LRU are going to be developed
by the same company that is developing the ATM system. The engineering skill and
knowledge required by these tasks is too disparate. These are also components which
are readily available in the commercial marketplace making it hard to develop them
internally with cost competitiveness.

It is more likely that the developer of the ATM system will choose to design the
software which drives the system and the cabinetry which houses the ATM machine.
Each of these are not already available in the marketplace. Each also offers the com-
289

Hand-off
pany the potential for providing a discriminator that will enhance one or more of the
effectiveness measures. In every system designed, the companies must make similar
choices about the scope of their expertise and at what level hand-off should occur.

For the sourced components then, hand-off occurs at component tier. For the net-
work sub-system and the back-end information processing system, other businesses
supply entire sub-systems at the sub-system tier. For the components that are devel-
oped internally several more tiers of design can occur before hand-off occurs. Even
when the components are sourced, companies are starting to move away from a hand-
off based primarily on text shipped to a different organization. Instead the system team
contains members from all of the organizations involved and from all of the disci-
plines. Design information, including models, is shared among teams that cross both
organizational and discipline boundaries. This has the predictable result of reduced
errors and miscommunication and a higher likelihood of maximizing the effectiveness
measures.

This chapter focuses on the hand-off between the systems engineering discipline
and the speciality disciplines which will design and specify the low level components
from which the system will be composed. It also discusses some of the continuing
coordination needs between the systems engineers and the specialty engineers.

Two handoffs are studied in this chapter, each to a software discipline. The hand-
off to database engineering and to user interface engineering will each be examined.
Before we can look at the handoff, however, we need to take the subsystems down
another level of design. This level will establish the appropriate context for handing
off the design.

14.2 Context For Handoff

In the previous chapter we already followed an example of the core technical process
applied to the subsystems context. Rather than repeat that here we simply present the
models of the ATM design taken to the next level of detail.
290

Hand-off
.

Figure 14-1., Structure Diagram for ATM Software Architecture divides the
ATM into three major structural portions with a few supporting pieces.

Figure 14-2., View of ATM Machine Software Behavior gives the behavioral
description of the ATM machine’s software. The main allocation of requirements and
functions in this behavior lie within the normal, maintenance, and testing operations.
The hand-off to the engineers in charge of the user interface and database pieces will
be examined in the context of the normal operation block. In actual design, of course,
these pieces need to be specified and handed-off for all phases of operation.

Database
ATM Machine

Store Machine Status
Find Offered Transactions
Receive Transaction
Validate Transaction
Synchronize
Process Card Insertion
Format Receipt
Store Transaction

Controller
ATM Machine

Update Machine Status
Start ATM

Accept Transactions
Perform Transaction
Cancel Transaction
Process Card Insertion
Run ATM Diagnostics
Dispense Money

User Interface
ATM Machine

Display Start Instruction
Display Reswipe Msg
Display Password Prompt
Display Repeat Password
Display Transaction Selection
Prompt for Additional Info
Print Receipt

Network Interface
ATM Machine

Listen for Messages
Send Messages

Display Completion Info
Read Card
Capture Password
Capture Transaction Selection
Capture Additional Info
Receive Completion Choices

Money Dispenser
ATM Machine

Dispense Money

Enter Diagnostic Mode

Shutdown ATM

Print Receipt
Support Field Service

Reset

Clock
ATM Machine

Update Time
Generate Interrupts

Alert User

Time Operations

Drives

Schedules

ControlsOwns

Updates

Notifies

Figure 14-1. Structure Diagram for ATM Software Architecture
291

Hand-off
14.3 ATM Handoff to User Interface

A fair amount of information about the user interface has already been specified in the
earlier tiers of design development. In any reasonable sized software system the user
interface design and implementation will have far reaching consequences for the
development of the rest of the system. 50% to 80% of the total software in many large
projects is dedicated to driving the user interface (Brown 1988).

This being the case it is extremely important that the user interface be handled
with special care. It can not be considered as an afterthought, something to through
together after the “real” system is designed and built. If we revisit the behavior for the
ATM from chapter 12 and look at how many of the behavior elements involve the user
interface we see that well over half of the behavior is directly affected by the interface.
Figure 14-3., User Interface Related Behavior of ATM Machine. shows this by shad-
ing the elements of the behavior which affect the user interface. Whatever choices are
made in designing the user interface are likely, therefore, to directly impact many of
the other components of the systems.

Initialize
ATM

Test
ATM

Select
Operation

Normal
Operation

Maintenance
Operation

Testing
Operation

Or Continue
Operation

yes

Shutdown
ATM

Figure 14-2. View of ATM Machine Software Behavior
292

Hand-off

Display
Completion
Information

Initialize
ATM

Validate
Data

Validate
Transaction

good

bad

Request
Validation
& Account

Display

Selection

Information

Receive
Validation
& Account
Information

And

Complete
Transaction

stop

bad

good

Card Password

Request

Choices

bad

Receipt

Account
Validated

yes

no

Requested
Information

And

Selection Additional
Info

continue

Figure 14-3. User Interface Related Behavior of ATM Machine.

User Interface

User Interface

 Output Behavior

Input Behavior

Display Start
Instructions

Read
Card

Display
Password

Print
Receipt

Capture
Password

Display
Re-swipe
Instruction

Instruction

Transaction
Capture
Transaction
Selection

Prompt
Additional
Info

Receive
Completion
Choices

Display
Re-peat
Password

Capture
Additional
Info
293

Hand-off
14.3.1 Assess Available Information
As with the other levels of detail, at separation a similar core process is applied. We
begin, once again, by gathering all of the relevant available information. We start with
the models developed thus far.

Models
Figure 14-3., User Interface Related Behavior of ATM Machine. provides the execut-
able specification for the behavior needed from the User Interface.

A final decision has not yet been made about what transactions are too be offered
through the ATM network (see Figure 11-10., View of Behavior of the ATM System on
page 246), and the ensuing discussion lead to an initial set of transactions to imple-
ment. The analysis in making this decision highlights the possibility that it will change
as the system evolves, perhaps not in the initial implementation, but as a evolutionary
growth of the system. The impact that this has on the user interface and other compo-
nents is to decide to use a flexible approach which can accommodate requirement
changes of this sort easily.

Scenarios of ATM usage can be derived from looking at the behavior of the bank
customer, as shown in Figure 12-5., View of Behavior of ATM Customer.

Effectiveness Measures
Some of the effectiveness measures are relevant to the UI, in particular is EM6. “Cus-
tomers shall prefer to use the ATM system over the bank tellers.” This measure is in
part addressed by the physical locations of machines within the ATM system. New
effectiveness measures were developed at the previous tier of design which translate
the original measure into rigorous and verifiable effectiveness measures for the User
Interface. These are:

• Based on a valid survey 80% of participants on their first use shall:

• Find the information displays self explanatory
• Follow the sequence of user actions successfully
• Make their choices without error
• Complete their transactions
• Express satisfaction in using the ATM machine

Domain Knowledge
Especially at hand-off “new” information becomes available. This new information
comes in the form of professional experience and education of engineers skilled in a
particular discipline.

When the design is handed over from one discipline to another, often necessary
changes to the design or requirements are quickly identified. In this case a requirement
to adhere to the Americans with Disabilities Act, ADA, is well known by the Human
294

Hand-off
Factors community. This places new constraints on the way the ATM User Interface
is designed. For instance, the interface may be required to be Braille-equipped. For
the purposes of this example we will ignore this new requirement to keep the example
simple. The way to manage changes such as this with a change adjudication process
are discussed elsewhere. Coming out of the change adjudication process will be the
accepted set of available information. The three parallel core steps can now be pur-
sued.

14.3.2 Parallel Design Steps
In the core process the parallel design steps are:

1. Define Effectiveness Measures

2. Create Behavior Model, and

3. Create Structure Model.

Similar design work occurs in separation but the design steps begin to change so
as to transition the information into the form needed by the specialty engineering
groups.

For the user interface one of the additional models that needs to be developed is
the user’s mental model (McGraw 1992). This model extends the customer model
developed in the earlier tiers. The customer models developed so far tell how the cus-
tomer behaves, what responses are desired from the customer and what stimulations
are given to the customer. These are termed the behaviors in systems engineering
terms or work processes in user interface terms. They also include the structure of the
ATM machine context as it relates to the user. Human factors engineering must take
into account these work processes and structure but must augment them with the
mental model of how the users views the world. If the end design of the user interface
is not consistent with the users’ mental models then additional training must be
planned to introduce the concept of operation. For the ATM, example the effective-
ness measures require that the user interface design match the users’ mental models
in order to meet EM6. EM6 states that 80% of users will successfully use the ATM on
their first attempt, thus no training time is provided for.

In the case of the ATM the mental model is fairly easy to discern. The behaviors
expected of the ATM user are the same as the existing behaviors of the same user at a
bank teller window. Only the actual mechanics of the transaction change. From the
user interface design standpoint, one of the challenges is to match the user interface to
the process of an actual bank teller. Other parts of the mental model of the users con-
cern the degree of computer experience expected. Since this is to be deployed for the
general public a relatively low experience base is assumed. Users’ will be assumed to
have experience with calculators and simple push-button interfaces. We must not
neglect smaller percentage of computer literate users. They could be turned off by an
interface that is overly “user friendly.”
295

Hand-off
With this all in mind we begin to develop the more detailed behavior of the user
interface. Figure 14-4., Behavior of Display Start Instruction gives a behavior for the
first piece of the user interface. This behavior takes into account the possibility that
the ATM may have a failure of some sort and need to display a message different from
the normal message. It also provides a looping mechanism to output more information
than can fit on a single screen.

.

Similar lower level behaviors need to be developed for each of the user interface
related blocks in Figure 14-3., User Interface Related Behavior of ATM Machine. on
page 293.

In parallel with the development of the behaviors the structure of the user inter-
face needs to be developed Figure 14-5., Structure of User Interface Components
gives the OMT diagram of the user interface. It consists primarily of the input buttons,
the output windows for the screen, and the controller class. The input devices are bro-
ken into two subclasses since it is likely that they will be sourced as separate items.
The output areas are similarly subclassed. Here the distinction between the subclasses
is not physical. They will each be rendered on the same physical display device. The
difference is semantic, with each window class performing a different role in the logi-
cal design of the user interface. These two class hierarchies are associated by an inter-
face controller class. A great deal of the behavior is mapped onto this controller class.
OMT diagrams with this general format are relatively common for single tasking user
interfaces. This model also will mesh well with the users’ mental model of interacting
with a single bank teller. In this case the interface controller performs the role of being
the single interaction point.

Sense
Status

Display
Start
Instruction

Status

Figure 14-4. Behavior of Display Start Instruction

RetrieveOK
Intro
Message

Intro
Message

Display
Intro
Message

Format
Intro
Message

Message
Complete

No

Yes

Error
Message

Retrieve
Intro
Message

Not OK

And
296

Hand-off
Once the behaviors are all modeled and the structure definitions are set, we are ready
for the final parallel design step in hand-off to user interface engineers. The user
interface now needs to be mocked up. Multiple versions of the interface with varia-
tions on the operating concept are often mocked up.

Mock-ups extend the executability of the models from a system engineering
simulation to something that can be shown to the various stakeholders for confirma-
tion that the system behavior is what they expected. Frequently, despite the fact that
rigorous systems engineering discipline may have been followed, changes are intro-

Display Window
Main

Display Graphic
.

Interaction Window
Auxiliary Background

Field

Display

Color

Button Keypad
Numeric

Input Device
Discrete

Signal Input
Value

Interaction Window
Button

Window

Display Text.

Color

Pattern

Size

labels

Interface
Controller

Display Start Inst.

Color
Pattern

Prompt for Card
Prompt for Password
Prompt for Amount
Prompt for Additional
 Information
Prompt for Completion
Display End Msg.
Initialize Display
Display Error Msg.

Drive Display

Receive
Events

Figure 14-5. Structure of User Interface Components

Action
Button

Receive Input

Title
Accelerator
297

Hand-off
duced at this point. Features that were not thought of are added to the work scope.
Others, that were planned, are removed or changed. Of course, all of the requests for
change have to be dealt with using the change management process.

Figure 14-6., User Interface mock-up displaying the start instruction and Figure
14-7., User Interface mock-up prompting for a transaction selection show the mocked
up screen displays.

These displays are easily put together using any of the commercially available
screen layout tools such as Xdesigner in the Unix environment or Visual Basic on the
PC platform. By hooking the mock-up to the executable behavior models, it can be
used to run scenarios through the entire simulation as the interior models are devel-
oped.

Figure 14-6. User Interface mock-up displaying the start instruction

Figure 14-7. User Interface mock-up prompting for a transaction selection
298

Hand-off
The multiple versions of the mock-ups are taken forward to the next core step
for trade-off analysis and selection based on the verified user preferences from sur-
veys and interviews conducted with the intended users.

Mock-ups of this nature serve multiple roles in a project. They provide early
validation of the systems operating concept by exposing users to a working model.
They also form the basis for development of the actual product. The tools used to
develop the mock-up produce the skeleton programming code in a variety of lan-
guages. Figure 14-8., Fragments of executable code produced by user interface mock-
up tool gives a sample of what this code looks like.
299

Hand-off
Figure 14-8. Fragments of executable code produced by user interface mock-up tool

...
Widget background_field = (Widget) NULL;
Widget main_display_window = (Widget) NULL;
Widget auxillary_interaction_window = (Widget) NULL;
Widget button_interaction_window = (Widget) NULL;
...
void create_shell (Display *display, char *app_name, int app_argc,

char **app_argv)
{

Widget children[4]; /* Children to manage */
Arg al[64]; /* Arg List */
register int ac = 0; /* Arg Count */

 ...
XtSetArg(al[ac], XmNtitle, “ATM User Interface Mockup”); ac++;
XtSetArg(al[ac], XmNargc, app_argc); ac++;
XtSetArg(al[ac], XmNargv, app_argv); ac++;
widget0 = XtAppCreateShell (app_name, “ATM_prototype”, appli-

cationShellWidgetClass, display, al, ac);
ac = 0;

...
XtSetArg(al[ac], XmNspacing, 30); ac++;
XtSetArg(al[ac], XmNmarginWidth, 5); ac++;
XtSetArg(al[ac], XmNmarginHeight, 5); ac++;
XtSetArg(al[ac], XmNentryAlignment, XmALIGNMENT_END); ac++;
XtSetArg(al[ac], XmNentryVerticalAlignment,

XmALIGNMENT_BASELINE_BOTTOM); ac++;
button_interaction_window = XmCreateRowColumn (widget2, “but-

ton interaction window”, al, ac);
...

act_button1 = XmCreatePushButton (button_interaction_window
“Action Button 1”, al, ac);
...

children[ac++] = background_field;
children[ac++] = main_display_window;
children[ac++] = auxiallary_interaction_window
XtManageChildren(children, ac);

ac = 0;
XtAddCallback(act_button1,XmNactivateCallback,

interface_controler.mainloop, ACT_BUTTON,1);
...

children[ac++] = act_button1;
...

}

int main (int argc, char **argv)
{

XtToolkitInitialize ();
app_context = XtCreateApplicationContext ();
display = XtOpenDisplay (app_context, NULL, argv[0],

“ATM_prototype”, NULL, 0, &argc, argv);
create_shell (display, argv[0], argc, argv);
XtRealizeWidget (widget0);
XtAppMainLoop (app_context);
exit (0);

}

300

Hand-off
14.4 Separation to Database

The handoff to database engineering also follows the core engineering process. As
always the first step is to assess the available information. The context for the portion
of the system being designed is especially important to consider. In this case the sys-
tem being designed is the ATM machine. The rest of the ATM system lies within the
context for this design. The impact this has is that the majority of database work lies
within the context. The database within the machine is transient in nature, storing a
short term log of transactions which are waiting to be committed to the main ATM
system database. It will also be used to store the allowable sequence of transactions
that are allowable for the current user. This usage of the database requires coordina-
tion between the chief software architect and the database engineer.

14.4.1 Available Database Information
 From the initial information develop in the ATM system context analysis:

• 11.2 The automated teller machine system shall communicate the transactions
it captures to the banks.

• 11.3 The automated teller machine system shall accept transactions after read-
ing a cash card and receiving a valid pin number from a system user.

• 11.4 The automated teller machine system shall execute only those transac-
tions for which validation is received from the bank.

• 11.6 The automated teller machine system shall print receipts for the transac-
tions executed.

Figure 12-13., Associations with ATM Machine on page 271, gives the context
for the ATM. This serves to frame the context for the database used within the ATM
machine. Figure 14-1., Structure Diagram for ATM Software Architecture on page
291, refines that information showing the database in the context of the rest of the
ATM machine software.

Other available information is the knowledge of the partitioning of behavior
between the ATM and the transaction concentrator. This was not detailed previously
in the example but is assumed here. In short, the database internal to the machine is
responsible for tracking short term knowledge. It must be able to recover its own state
from any exception conditions that arise. It also has to ensure that the transaction con-
centrator has logged any transaction that it performs. The concentrator is responsible
for long term logging of transactions and for printing of all of the reports required of
the system. We also have available any of the other models that are developed for
other parts of the system. These can be called upon as needed, for clarification or pos-
sibly for introduction of change that the database subsystem requires.

As always we proceed to the parallel design steps.
301

Hand-off
14.4.2 Behavior and Structure of ATM database
Database design requires both structural modeling and behavioral modeling. It also
has its own set of measurement criteria or effectiveness measures. One of the advan-
tages that arise from designing with executable models is that the implementation is
separated from the design. Thus if, as is likely in this case, the prudent approach is to
implement the database directly within a programming language then the design can
be transformed into code directly. If, on the other hand, the design calls for more
highly crafted database mechanisms, the design can be transformed into a schema for
use with a commercial database management system. The portion of the database
design that lies within the transaction coordinator is likely to need this level of sophis-
tication. The same design approach is employed in each case, however, with the final
implementation choice postponed until the design is complete. The choice can then be
made based on weighing all of the factors in the design.

Behavior
Figure 14-9., View of ATM machine database behavior gives the normal processing
associated with the ATM machine database.

.

This behavior lies within the normal operations context presented in Figure 14-
2., View of ATM Machine Software Behavior on page 292. Looking at this behavior we
can see that the database behavior is a linear path through a sequence of functions,

Process
Insert

Card Insert

Build
Account
Record

Card
Data

Match to
ATM
Capability

Validate
Account

Receive
Transaction
Request

PIN
Number

Find Bank

Offered
Transactions

Validation Trans
List

Local Trans
List

Open

Transaction
Local

Transaction
Data

Validate
Transaction

Perform
Transaction

Commit
Transaction

& Lock & Unlock
Continue

yes

Prepare

And

Receipt
Close
Account
Record

Figure 14-9. View of ATM machine database behavior

Normal ATM
Database
Operation
302

Hand-off
with one iterative section. The use of graphical models to view, and construct, the
design of the database has made this attribute of the design plainly apparent. With the
behavior laid out we can now proceed to the database structure.

Structure
In designing the structure of the database we can reflect back the behavior for identi-
fication of the necessary objects. Some of the database objects will be used to store
transaction related data. Other items will be needed to store data which is internal to
the workings of the system. The inputs and outputs to the process steps are used to
identify candidate items for inclusion in the database as are the names of the process
step. In this way teh database engineer transform the requirments given in the form of
a behavior model into the necessary structure definition. A listing of these includes:

• Account

• Transaction

• Bank

• Lock

• Receipt

• Card

• PIN Number

These are all candidates for representation in the database. Further engineering
analysis leads us to eliminate some of the candidates and add others. Card and PIN
Number are both eliminated because they are transitory with respect to this database.
When the central ATM system database is designed these will be reconsidered. Bank
is also eliminated since there are no relevant characteristics associated with it. Receipt
requires more consideration. It could be made a part of the design or could be elimi-
nated depending on what other choices are made. This is a decision left to database
engineering experience and knowledge. Methodology can not be used to make it.

In our sample design we have chosen to eliminate receipt in favor of keeping
Transaction which we feel more accurately names database information. Account and
Lock are also kept, each for a different reason. Account has identifying information
which is needed for the duration of the database entries. Lock is more of a traditional
database element which might be provided as part of the implementation choice or
need to be modeled. In our case we choose to model it.

Beyond the initial candidates we have added a few classes. We need a class to
store the information relating to the available operations that a bank offers. We also
have added a class which house the database control behavior and information.Figure
14-10., View of ATM machine database structure gives the OMT diagram of our
design.
303

Hand-off
As with the user interface engineering, we can build this design using interactive
design tools. These tools can then turn the design around into an implementation. This
generation of the implementation, or at least its structural elements ensures that the
design is accurately transformed. As with the transition between tiers of systems engi-
neering hierarchy, the automation of the hand-off eliminates chance for introduction
of error. Figure 14-11., Automatically Generated C++ Database Declarations gives
one of the possible code projections from the OTM model. The same information
could just as easily have been translated into code for implementation with SQL data-
base management system.

Lock

Author

Database Controller
ATM Machine

Signal Input
Find Offered Transaction
Receive Transaction
Validate Transaction
Close Transaction
Process Card Insertion
Format Receipt
Close Account Record

Reason

Transaction

Amount
Source
Destination
Timestamp

Commit
Terminate
Recover
Print

Account

validate

Operation

Display Item
OPcode

Current

Allowable

Supervises

owns

Governs

Coordinator
Transaction

Log Transaction
Commit Transaction
Route Transaction
Validate Transaction
Validate PIN

Check PIN

Communicates

Figure 14-10. View of ATM machine database structure
304

Hand-off
// DECLARATIONS FOR OMT MODULE atm
class Transaction_Coordinator;
class ATM_Machine_Database_Control;
class Account;
class Lock;
class Transaction;
class Operation;

class ATM_Machine_Database_Control
{
 public:
 void Recover_State ();
 void Find_Offered_Transaction ();
 void Receive_Transaction ();
 void Validate_Transaction ();
 void Close_Transaction ();
 void Process_Card_Insertion ();
 void Format_Receipt ();
 void Close_Account_Record ();
 protected:
 Account* ptrAccount;
 Set<Operation*> ptrOperation;
 Set<Transaction*> ptrTransaction;
 Lock* ptrLock;
 Transaction_Coordinator* ptrTransaction_Coordinator;
};

class Account
{
 public:
 void validate ();
 protected:
 ATM_Machine_Database_Control* ptrATM_Machine_Database_Control;
 Transaction_Coordinator* ptrTransaction_Coordinator;
};

class Transaction
{
 public:
 void Commit ();
 void Terminate ();
 void Recover ();
 void Print ();
 protected:
 void* Amount;
 void* Source;
 void* Destination;
 void* Timestamp;
 ATM_Machine_Database_Control* ptrATM_Machine_Database_Control;
 Lock* ptrLock;
};

class Operation
{
 protected:
 void* Display_Item;
 void* OPcode;
 ATM_Machine_Database_Control* ptrATM_Machine_Database_Control;
};

Figure 14-11. Automatically Generated C++ Database Declarations
305

Hand-off
14.5 Hand-off

Hand-off is one of the critical design points for any system. The requirements for each
of the components must be clearly and unambiguously conveyed to the specialty engi-
neers. As the design is passed along the basic core technical process continues to be
employed. It is also augmented with modeling techniques which are peculiar to the
specialty. We have looked at only two handoffs in this chapter. In practice there would
be 10s to 100s of handoffs to a variety of specialties, even in a system of modest size
such as the ATM system. Each of these needs to be handled with care and diligence.

14.6 Exercises

1. Analyze hand-off to the engineering of field service and installation for ATM
Machines (a subset of the whole system to limit problem scope).

a. Select useful models from the exercises of Chapter 13.

b. Apply the six core steps and extend as needed the results of Chapter 13 to
establish how installation and field service can become a competitive income
producing operation.

c. Define the parts of the ATM Machines that are involved and the kinds of infor-
mation which must be supplied.

d. Define the major elements of training required.

e. Define repair, resale, and disposal activities.

2. Define the hand-off points for the components of a computer.

3. What information is required to hand-off the design of a chiller for a water cooler?
How should it be presented?

4. Systems are often synthesized for existing components. How does this effect hand-
off?

5. What factors should be considered in determining when hand-off should occur in a
design?

14.7 References

Brown, C. M. L. 1988 Human-Computer Interface Design Guidelines. Norwood:
Ablex Publishing

McGraw, Karen L., 1992, Designing and Evaluating User Interfaces for Knowledge-
based Systems, Prentice-Hall.
306

Interface with Acquisition and Management
Interface with Acquisition and Man-
agement

15.1 Introduction

The preceding chapters describe how to model all kinds of systems: products, ser-
vices, businesses, processes, and plans. The same modeling techniques were applied
to the systems engineering process itself with emphasis on the technical engineering
work. The major behavior models and information models for the systems engineer-
ing process are collected together for reader convenience in the last chapter.

In addition to modeling the systems engineering process, the handoff to engi-
neering design disciplines was described in “Hand-off” on page 289. This chapter
describes the remaining major interface of systems engineering, the interface with
acquisition organizations and with management. The usual situation pertains. The
cultures, processes, notations and naming conventions have evolved independently
such that the common abstractions and development steps are obscured. This chapter
identifies the common abstractions that pertain to the interface with acquisition and
management.

15.2 Introduction of Modeling into Business Cultures

The introduction of the modeling of complex systems into businesses for which it is
new requires a culture change. Such an introduction can be initiated only if those in
charge of setting business goals favor the change. Those in charge must see the
change as one which will improve business profitability and can be integrated with
the existing culture. In addition the change must be perceived by the engineers
affected as helping them with the goals, schedules, and evaluations which they must
meet. This population of engineers includes not just the systems engineers but also all
those who receive specifications from them or who participate on integrated teams.

 The several existing cultures with which the systems engineering with models
must integrate have long independent development histories. This chapter considers
two types of businesses and shows how the development of systems with models is
related to these traditions. The relationships are close and compatible. However, a
first look at the relationships shows substantial differences in notations, the naming of
307

Interface with Acquisition and Management
things, and in the views of information used. The two business types this chapter con-
siders are the Aerospace supplier industry and commercial product/service develop-
ment businesses.

The aerospace industry responds to the major agencies of government and the
acquisition authorities which they have established. The development of aerospace
products is controlled by government budgeting and the rules of acquisition authori-
ties. The state of system development and its best practices are summarized in the
emerging systems engineering standards (IEEE P1220, 1994), (EIA/ANSI, 1996).
Some relationships are developed here between the P1220 standard and the six core
systems engineering steps used in modeling. The EIA/ANSI standard, scheduled to be
released later this year) develops higher levels of abstraction than those included in
P1220.

Commercial product/service development businesses are led and controlled by
their board of directors and their management. Sophisticated techniques have been
developed over the years in companies and business schools to establish a business
strategy which matches products and services to the marketplace to gain competitive
advantage. Management adoption and implementation of these strategies drives the
systems engineering that is done. The methods, techniques, views of information, and
notations used by management for strategy analysis have evolved separately from sys-
tems engineering and are different in appearance and naming conventions. However,
some of the basic abstractions used by management are identical to those used by sys-
tems engineers and engineering teams, because both groups are analyzing product or
services and their appeal to customers. It is likely futile to try to establish a single
notation and set of views of information to be used by all. Within management circles
and also within the systems engineering profession a plethora of notations and views
are in use. It is useful to select a representative modern methodology for strategic
business analysis, and extract from it the basic abstractions which are common to stra-
tegic business analysis and to systems engineering. This basic understanding can then
be used to transform information between business management and systems engi-
neering teams, or to support teams that directly integrate management strategy experts
with the product development team. Relationships are developed here between a rep-
resentative modern methodology for commercial business strategy development,
(Gale 1994), and the six core systems engineering steps.
308

Interface with Acquisition and Management
15.3 Commercial Product/Service Development Businesses

These commercial businesses develop their own products and services, manufacture
or source the parts/infrastructure, and sell their product lines/services over decades.
Occasionally a totally new product or service is developed. More frequently product
features are extended or new technology is introduced. There is no financial return to
the business for up front investment in new product until customers voluntarily make
purchases based on their evaluation of the best offering available to them. The prod-
ucts range from simple systems to very large complex systems. Competition and up
front investment in product keep the development processes lean.

A century of developing techniques for business strategy has been integrated
into Customer Value Analysis, CVA, (Gale 1994). Some of these techniques have
emerged from the pioneering work of Deming and Juran in the 1950’s and its applica-
tion in Japan and the United States. Quality Function Deployment and House of
Quality methods are now widely applied. Strategic planning at GE in the 1970’s and
studies by the Profit Impact of Market Strategy (PIMS) Program demonstrated the
importance in understanding related factors such as market share and market per-
ceived quality and value as seen by customers and prospective customers, (Gale
1994, 230). To the tradition of financial reporting, tight financial control, and high
manufacturing quality, CVA adds market perceived quality and value. To organiza-
tional function heads with fiefdoms, CVA adds interfunctional teams that understand
competitive strategy. Analogous developments have been occurring in the develop-
ment of systems. To the tradition of defining systems with text requirements, model
based systems engineering adds executable modeling for efficiency and rigor. To the
earlier practices of individual engineering fiefdoms, modern engineering practice
adds interdisciplinary teams that understand the system requirements and effective-
ness measures. The effectiveness measures, domain analysis and concept analysis of
systems engineering are closely related to perceived quality and value in CVA.

Just as there have been many notations and methodologies applied to systems
engineering, many non-financial measures and representations have been applied to
business analysis. Often customer satisfaction, market perceived quality, productivity,
innovation, and technology trajectory are known to be important but are not presented
in a way that an interfunctional team can make use of that information. One of the
modern systematic presentations of the information is provided by the seven tools of
CVA, (Gale 1994, 209). The seven tools are:
309

Interface with Acquisition and Management
1. Market-Perceived Quality Profile

• Quality related to competitors
• Quality attributes with importance weights
• Perceived quality as scored by customers for each attribute
• Quality Ratio of own product score vs. competitors score for each attribute
• Market-Perceived Quality Ratio as weighted average of attribute Quality

Ratios
For example, quality attributes for luxury cars could be: trouble free, fuel economy,
aesthetics, service, comfort, driveability, rapid acceleration, large and roomy, sales
environment, and brand image.

2. Market-Perceived Price Profile

• Price related to competitors
• Price satisfaction attributes with importance weights
• Price satisfaction as scored by customers
• Relative Price Ratio of own product score vs. competitors score

For example, price satisfaction attributes for luxury cars could be: purchase price,
trade-in allowance, resale price, and finance rates.

3. Value Map

• Relative Price Ratio from (2) vs. Quality Ratio from (1)
4. Won/Lost Analysis

• List recent sales efforts and who won/lost
• Attach explanation

5. Head-to-Head

• Quality Ratio of own product score vs. competitors for each attribute
• From (1) above

6. Key Events Time Line

• List of important events in the marketplace
• Lists time
• Lists who responsible

7. What/who Matrix

• Quality attributes vs. responsible organization

Five of these seven tools, 1., 2., 3., 5., and 7. utilize quality attributes or price sat-
isfaction attributes. These customer attributes correspond directly to the systems engi-
neering effectiveness measures which are used to guide trade-off to find a near
optimal design. The weighting functions used in CVA correspond to the weighting
310

Interface with Acquisition and Management
functions used to create a single cost function for trade-off. The same basic abstrac-
tions drive much of the business strategy analysis and the criteria for finding a near
optimal design for the products that implement the design in the marketplace.

In both CVA and in model based systems engineering, it is necessary to develop
many of these attributes and weights by survey of customers, operators, or others who
are knowledgeable. Relative value to the customer in systems engineering is often
obtained by performing concept analysis as described in “Concept Analysis” on
page 229. This provides a quantitative value number for customer perceived value
attributes based on contribution of the product to the profitability of the customer. For
the situations in which it applies quantitative modeling is a more rigorous approach
than those described in CVA and yet is completely compatible with CVA. In many
situations survey, not analysis, must be applied to get the desired attribute values
related to customer preference. Some situations are subtle and require both. For
example, a quality attribute or effectiveness measure for high performance automo-
biles is rapid acceleration. This quantity can be calculated during specification and
design with engineering equations from the attributes of parts like the torque-rpm
curve for the engine, transmission ratio and friction losses, friction between tires and
road, and automobile weight. The acceleration achieved can be measured on proto-
type cares and compared with measurements on competitors cars. One automobile
company found that their automobile had superior acceleration to it chief competitor
but still fell behind in customer scoring of this quantity. Further analysis showed that
the competitor car responded to rapid throttle advance with a slight pause, and then
with a small backward flexure of the seat when acceleration began. Customers
responded to the feeling of acceleration not to the absolute fact.

Confirmation of the attribute values is often obtained as early as possible with
customer survey of early product prototypes or service offerings. Examples include
test marketing of long life light bulbs, the GE appliance facility in Louisville appli-
ance park for customer use of prototype appliances, prototype medical diagnostic
equipment in select teaching hospitals, and early trials of cellular phones or home
shopping networks. Executable specifications resulting from model based systems
engineering provide opportunity to get this confirmation earlier and at lower cost in
many cases.

The optimization features of engineering of model based systems engineering
and the application of concept analysis form the interface between systems engineer-
ing and strategic management of the business. It is useful and effective to create a
direct bridge using effectiveness measures, their weights, concept analysis modeling
and surveys. To the extent that this is done, it becomes possible to expand the ideas of
teams in the two fields, management and systems engineering. The interfunctional
management team and the integrated product development team can merge. At the
very early stages of a development management participation on the team is expected
to be large. As the development matures and progresses, and as the team grows much
311

Interface with Acquisition and Management
larger in size, there is likely an increasing engineering and manufacturing presence on
the team and a relatively smaller management participation. The effectiveness mea-
sures, and the executable models that produce effectiveness measure values bind man-
agement and engineering together in this approach because the effectiveness measures
are the same abstractions as the customer value satisfaction attributes and quality
attributes. With executable models it is possible to project the views of information
wanted by managers or by engineers because the same basic abstractions are impor-
tant to both.

15.4 Modeling and Aerospace Acquisition

Aerospace businesses must respond to funded contract opportunities as they become
available. The system requirements, timing, funding amount, funding rate, funding
continuity, schedule, and process requirements of the contracts are largely out of their
control. These determinative factors are established by congress, the executive, and
government agencies, and are influenced by the media. This is a highly technical,
political, competitive, and social determinative process which considers national
advantages and dangers. Systems engineering in this arena generally assumes that
there will be a request for proposal, RFP, issued by an acquisition authority to which
the business must respond. Classically that RFP contains a text list of requirements to
be met by the design and validated on the completed system. For large complex sys-
tems the requirements document can be hundreds or more of pages. Awarded contracts
define the requirements to be met, the schedule, the deliverable, the standards to be
met, and extensive reviews and documentation required by the acquisition authority.

This acquisition process has resulted in the development of extremely large and
complex systems which push state-of-the-art and work under extreme conditions. The
best practices of systems engineering have been described and are taught at the
Defense Systems Management College, (Kockler 1990), and are appearing in emerg-
ing standards, (IEEE P1220 1994), (EIA/ANSI 1996). The acquisition process is
under pressure to become more efficient because of the difficulty encountered in con-
tinuing to acquire and maintain the increasingly complex systems which are desired
with the funding that is available for them.

If one considers the engineering of complex systems to be a valuable jewel, then
it is different facets of that single jewel that are viewed from different directions by
aerospace systems engineering, by commercial product/service development busi-
nesses, and by systems engineering using models and objects. Except for detailed
knowledge of particular applications and technologies, the actual technical system
engineering work that needs to be done to develop complex systems is the same for
the many types of systems. This can be seen from Figure 15-1., Typical P1220 Sys-
tem-Part Breakdown, which shows physical elements from which the system is built.

In OMT, this would be a parts tree aggregation.
312

Interface with Acquisition and Management
Subsystem

Sub-
Component

Component

Product

Assembly

System

Product

Subsystem Subsystem Subsystem Subsystem

Assembly

Component Component Component Component

Sub-
Component

Sub-
Component

Sub-
Component

Sub-
Assembly

Part Part

Part Part

Figure 15-1. Typical P1220 System-Part Breakdown

External
System

Higher Level
System

Higher Level
System

Domain Analysis

Concept Analysis
313

Interface with Acquisition and Management
Standard P1220 provides a standardized set of names for the objects in the suc-
cessive levels or tiers of decomposition/synthesis of the system. It defines a part as the
lowest element of a physical or system architecture, specification tree, or system
breakdown structure that does not need to be partitioned further. (e.g., bolt, nut,
bracket, semiconductor, computer software unit). This is an typical example of the
part tree or aggregation tree for the system in an OMT model.

There are three very important concepts that apply to Figure 15-1., Typical
P1220 System-Part Breakdown.

1. What constitutes a system, product, subsystem, assembly, component, subcom-
ponent, sub-assembly, or part is relative to the business dealing with it.

2. The systems engineering process applied at any of these tiers of decomposition
is basically the same, a core process applied repeatedly.

3. The requirements that defined the system came from application of the system
engineering process at a higher level of decomposition, from the tier above.

15.4.1 Relativity of Systems, Products
At any tier of decomposition of the system: product, subsystem, etc., any of these
physical elements can be sourced from a subcontractor. The product, subsystem, or
component for which the subcontractor agrees to supply becomes the system so far as
the contractor is concerned. What is the “system” is relative to what you agree to
design and supply. Systems are systems of systems supported by an extremely large
vendor network. The vendor receives a description of what is wanted, its require-
ments, and supplies objects that meet what is wanted often built to a proprietary
design of the subcontractor. The requirements can be supplied in several forms as text
shall statements, as complete narrative descriptions of the excitations, responses, per-
formance and constraints and as executable models of the excitations, responses, per-
formance, constraints, and structure.

15.4.2 A Core Technical Systems Engineering Process
A fully useful systems engineering process is applicable at all tiers of the contractor/
subcontractor network. It is able to define fully what a system is to do and to define
fully how the system is to be built. It is able to produce both requirements and a near
optimal design solution. It must consider the systems engineering of the product, its
integration, its distribution, support, and disposal, needed product training, product
test, and product manufacture.

If the process is model based, then the process description must define the mod-
els to be used, the ordering of their use, and what they capture and transform.
314

Interface with Acquisition and Management
15.4.3 Requirements Come from the Tier Above
The requirements that appear in a request for proposal or a contract come from sys-
tems engineering applied at the tier above. There are aerospace businesses, often
called system integrators, which deal primarily with the high level generation of
requirements and the coordination of subcontractors. Many other kinds of businesses,
such as commercial product/service developers, do not respond to a request for pro-
posal because they develop internally the product/service concept, its implementation
as a product line over time, and how to modularize it for high levels of reuse, ease of
evolution, and compatibility with earlier releases. They often outsource the majority
of the product elements or service infrastructure. They control the requirements they
present to their suppliers to their own internal or industry agreed standards. From the
viewpoint of this kind of business the systems engineering process does not begin
with an RFP and analysis of requirements from the RFP or a contract; it begins with
analysis of the market. Descriptions of systems engineering using models takes a sim-
ilar point of view. This results in two tiers of development or decomposition above
system under development as shown in Figure 15-2., Renaming of P1220 System-
Part Breakdown.

System

Business using

Product

Domain of

System
System

System System

Product

under
Development

Figure 15-2. Renaming of P1220 System-Part Breakdown

System under
Development

Business using
System under
Development

Businesses using
System under
Development

Domain Analysis

Concept Analysis
315

Interface with Acquisition and Management
The business which purchases and uses the system will also use many other sys-
tems that must all work together. Concept analysis, Chapter 11, models the business
using the system under study to establish the value of that system to the business and
the operators and users of the system. This may be done for a single point of time or
over a period of time such as a decade to understand product evolution. Domain anal-
ysis extends this to a domain of businesses using the system under development.

Very often it is desirable to sell the system to more than a single kind of business.
This goal makes it desirable to partition the system such that the system and the ele-
ments of the system match the different businesses uses. This is done by domain anal-
ysis which applies the techniques of modeling to a collection of businesses using the
product. Functionality and modularity that satisfy multiple businesses are abstracted
from the analysis. This is design for reuse.

A supplier business responding to an RFP often need not be concerned with the
business and domain levels of decomposition. If there are problems with the require-
ments received or if it is desirable to market the resulting product to businesses other
than the contractor issuing the RFP it may be important to analyze these tiers.

15.4.4 P1220 Systems Engineering Process
Figure 15-3., The P1220 System Engineering Process shows the process as described
in the P1220 standard.
316

Interface with Acquisition and Management
The P1220 standard and its detailed description of the work steps to be done
does not assume the existence of an RFP with a text requirements document. Rather
the P1220 description of Requirements Analysis, Requirements Trade Studies &
Assessments, and Requirements Baseline Validation are a prescription for developing

Requirements

Synthesis

Requirements
Trade Studies

Analysis
& Assessments

Requirements
Baseline

Validation

Design
Trade Studies

& Assessments

Functional
Trade Studies

& Assessments

Functional
Verification

Functional
Analysis

Physical
Verification

Systems

Analysis

Requirement

Trade-offs & Impacts

Requirement &

Constraint Conflicts

Decomposition/Allocation

Trade-offs & Impacts

Decomposition &

Requirement Allocation

Design Solution

Trade-offs & Impacts

Design Solution

Requirements & Alternatives

Alternatives

Validated Requirements

Requirements Baseline

Functional Architecture

Verified Functional

Physical Architecture

Verified Physical Architecture

Control

Process Outputs

Baseline

Architecture

Process Inputs

Figure 15-3. The P1220 System Engineering Process
317

Interface with Acquisition and Management
the requirements from information about the business, operators, and users who will
utilize the system under development. This prescription can be used at the Domain
and Concept/Business levels of decomposition as well as at the lower tiers discussed
in P1220. However, the partitioning of the systems engineering process differs from
that used in “Core Technical Process” on page 97. The equivalence is quite simple.
The application of the six core technical modeling steps to the context of an object is
equivalent to the shaded requirements related steps. A second application of the six
core technical modeling steps to the object itself is equivalent to the non-shaded steps.
The same modeling process is applied twice, once to the context of the object, then to
the object itself.

From the viewpoint of modeling, the requirements for a particular subject system
are created by applying the six core technical steps to a domain of businesses using the
subject system, or to a particular targeted business using the subject system and to the
context of the subject system. The information generated is not just the requirements
for the system but a context description and a partitioning that is near optimal for a
product line, for evolution of the subject system over time through a succession of
releases, and for high levels of reuse. When this work is done by one organization and
then the requirements are used to contract further development with other organiza-
tions, an RFP or RFP’s must be written using the requirements. This is frequently the
situation in the Aerospace industry. In much of the commercial world a commercial
product/service development company does all of this work and produces require-
ments for the vendor network that supports it. In all cases the requirements may be in
the form of text shall statements, narrative operations concepts, executable models, or
a combination of these.

15.5 Summary

The full analysis of a system to be developed, the subject system, involves systems
engineering at all the levels form domain to parts. All of this work is done and con-
trolled by commercial product/service development businesses. This work is typically
partitioned among several businesses in the aerospace industry with requirements
imbedded in an RFP used to transfer information and contract responsibility among
the organizations.

The management techniques used by commercial businesses rely heavily on
quality attributes, price satisfactions attributes and associated weighting functions.
These quantities correspond directly to the effectiveness measures and the weights for
a design cost function that are essential to trade-off in systems engineering. The points
of view and the assigned teams can be unified by recognizing and using these com-
mon abstractions. The quality attributes and price satisfaction attributes are the major
items of information for the interface between management business strategy and the
engineering of complex products and services.
318

Interface with Acquisition and Management
The viewpoint of engineering with models and objects and the viewpoint of
standard 1220 are very similar in terms of description of the detailed work steps. The
major difference lies in how the steps are partitioned in the process description. From
the modeling standpoint it is useful to describe the process in a manner that show the
repeated use of a few different models. Thus the description is a single repeated core
technical process of six modeling steps which is applied first to the context of an
object to generate requirements and then to the object itself to generate system
design. This partitioning is consistent with high levels of abstraction and with what
occurs in commercial product/service development businesses. P1220 does not parti-
tion the process in this fashion. Rather it partitions the process into requirements anal-
ysis, functional analysis and synthesis supported by trade studies and assessments
which are grouped together, generalized, as systems analysis. The partitioning of the
system engineering process with a separate partition for requirements analysis
matches supplier businesses which receive requirements in an RFP from an initiating
organization. The interface between the businesses responding to the RFP and the ini-
tiating organization can be bridged by augmenting the text requirements of the RFP
and the text based proposal responses with executable models. The information trans-
fer is made more rigorous and less prone to errors of interpretation. The work can be
performed in accordance with the best practices proven through use and described in
standards such as P1220. After contract award, it is possible to demonstrate the
progress being made by executing the models as well as by providing documentation
for review.

15.6 Exercises

1. Create examples of the seven tools of Customer Value Analysis for the ATM sys-
tem.

a. Consider the banks that own the system, the bank employees who work with it,
and customers who use it.

b. Compare quality attributes and value attributes with effectiveness measures for
the ATM Machine.

2. Map the detailed steps that decompose Requirements Analysis, Functional Analy-
sis, Synthesis, Validation, and Systems Analysis onto the six core steps applied to
context of the object under development and to the object under development.

3. If the RFP-based acquisition system works to produce complex systems which
push the state-of-the-art, why does it need to change?

4. In what way(s) does the six-step core technical process differe from the emerging
standards? How are they alike?
319

Interface with Acquisition and Management
15.7 References

IEEE P1220 1994, IEEF Trial-use standard for application and management of the
systems engineering process. Institute of Electrical and Electronic Engineers,
New York, February, 1995

EIA/ANSI 1996, EIA Interim Standard Systems Engineering, Electronic Inductries
Association, Arlington, Va., to be released

Gale, Bradley T. 1994, Managing customer value: Creating quality and service that
customers can see, The Free Press, New York

Kockler, Frank R. 1990. Systems Engineering Management Guide, Defense Systems
Management College, US Government Printing Office, 000802001202-5.
320

Choosing Methodology
Choosing Methodology
16.1 Tailoring Meta-process to Methodology

This chapter focuses on the alternatives that exist in modeling systems. The alterna-
tives and tailorability of the systems engineering meta-process are very broad. Yet a
team developing a large complex systems needs to perform its work efficiently with
high levels of information exchange among the large numbers of team members. The
team must proceed with a consistent set of engineering steps, views of information,
notations for that information, and reviews of progress. The team needs to work with
a methodology they can apply efficiently. The meta-process must be tailored and par-
ticularized for the teams.

Although the engineering steps and notations presented in this book can be used
directly as a pattern for a methodology, in many cases it will be most profitable to fit
the methodology to the existing culture and experience of the work force. The work
force may be trained in aerospace style systems engineering, in one of the forms of
object-oriented software development, in the structured analysis type of software
development or some other tradition. A near optimal solution to this process system
problem is to match the proven best practices of systems engineering to existing cul-
ture, because training is very expensive. Some heuristics for tailoring:

• Utilize proven best practices as incorporated in the core technical process and
described detail in texts, (Blanchard and Fabrycky 1990).

• Decide how the system development will be partitioned among the teams

• By a system parts list, which emphasizes subsystems to components
• By functional groupings, which emphasizes similar functions
• By partitioning the context into weakly interacting regions, which empha-

sizes response to excitation without predetermining functional groupings
or decomposition into parts.
321

Choosing Methodology
• Select the views of information to be used and the notation for the views.

• The views must span the work to be done.
• The team members must be trained to understand and work with the views.
• Training costs and errors from misunderstanding will be minimized if the

work force has experience with most of the views and notations selected.
• Tailor the assignment and sequencing of engineering steps to the work force

and the application

• In some organizations there is a long term culture of some groups perform-
ing analysis of text requirements, behavior, and structure; and separate
groups doing performance analysis.

• Choose to either partition the core technical process among teams, or to have
teams execute the whole core technical process on their assigned partition
of the system.

• Either encourage the teams to use the concurrency among the core engineer-
ing steps creatively, or give them a recommended sequence of development
for those concurrent steps.

• In some applications the objects are well known in advance and creating
structure models first makes sense.

• In other applications functionality and excitation behavior are known most
thoroughly and creating behavior models first makes sense.

• Sometimes the effectiveness measures have either been well defined so they
can be accepted early, or they badly need definition to guide the develop-
ment and teams so that doing effectiveness measures first makes sense.

• Incorporate a well defined process for handling the unexpected discoveries
made by the team during development and for handling the late discoveries
made by sponsors and then required of the development.

• The discoveries will interrupt the ongoing systems engineering work at any
point and send it back to some other point.

• An instituted process and supporting organizational structure is required to
handle the discoveries.

16.2 Best Practices and Views of Information

As had been shown in this book, systems engineering has its own best practices which
have been refined for many decades. Several of these best practices have a great
impact on the information generated, on the views of information which are used in
modeling and on process steps which are critical to any methodology used for systems
engineering. Among these best practices are:

1. Hierarchical development in tiers inclusive of domain analysis, concept analy-
sis, system analysis, sub-system analysis,... component analysis. It may be top
322

Choosing Methodology
down, decomposition, or bottom up, synthesis.

2. Specification of what a system is to do, its behavior, separate from how it is to
be built, leaving design to design engineering teams. This enforces separation
of behavior models from structure models.

3. Creation of trade-off criteria and use of a trade-off process step to find a near
optimal system solution from a multitude of possible solutions. This is made
efficient by using alternative mappings of behavior onto structures of alterna-
tive sets of components to develop a set of alternative designs for evaluation.
Separate models of behavior and structure are needed to make this practice
efficient.

4. Creation or refinement of an implementation plan at each tier of development.

16.3 Views of Information in Systems Engineering

The two primary views of information are those of structure and behavior. They are
kept separate as views for purposes of specification and trade-off. They are merged
by the allocation or mapping of behavior onto the structure for a complete model of
the system, sub-system or component. Figure 16-1., Possible Views of Behavior and
Structure shows this separation and the mapping. There remains the issue of what are
the possible views of behavior and of structure.

16.3.1 Possible Views of Structure
Description of structure requires aggregation or parts list, interconnection, and classi-
fication, all annotated with number. This results in a primary view of structure and six
subsidiary partial views. Primary view:

1. Aggregation, Interconnections, and Classification

Subsidiary partial views:

1.1 Aggregation or parts list

1.2 Interconnection

1.3 Classification

1.4 Aggregation with Interconnection

1.5 Aggregation with Classification

1.6 Interconnection with Classification
323

Choosing Methodology
Map of
Behavior

to
Objects

Classification
(Class Tree)

Aggregation
Assembly

or

Interconnection

Structure Model
(How)

Behavior
Model
(What)

Parallel Function,
I/O, Control

State, I/O, Functions
Events, Control

Views of Behavior

Projections
 of

Behavior

Projections
 of

Behavior

Function,
Control

Function,
I/O

State,
Control,
Events

Function,
I/O

Defines Interconnection, Interfaces

Encapsulates Functions

Represented By

Context Diagram

(Part Tree)

Views of Structure

Figure 16-1. Possible Views of Behavior and Structure
324

Choosing Methodology
16.3.2 Possible Views of Behavior
Description of behavior requires function, control (ordering of functions), and Input/
Output. There are also two ways of representing concurrent functions, more than one
function is executing at a given time, the predominant situation in large systems. One
can describe what is occurring at a given time and call it state, or one can describe the
functions as parallel functions. This results in two primary choices in views of behav-
ior, each of which has subsidiary partial views.

1. Parallel function, control, and input/output

1.1 Parallel function and control

1.2 Parallel function and Input/output

1.3 Input/output and control

2. State, control, events, function, and input/output

2.1 State, control, and events

2.2 Function and input/output

Views of Behavior and Notations
These views are collections of information which can be represented with many dif-
ferent graphic or text notations. Some of the popular notations are listed below.

1. Parallel function, control, and input/output - Behavior Diagrams

1.1 Parallel function and control - Functional Flow Block Diagrams

1.2 Parallel function and Input/output - Data Flow Diagrams, N-Squared Diagrams

1.3 Input/output and control - Control Flow Diagrams

2. State, control, events, function, and input/output - example not known

2.1 State, control, and events - State Charts

2.2 Function and input/output - Activity Charts, Data Flow Diagrams, N-Squared
Charts

All of the possible views of behavior, with one exception, are in use and are sup-
ported with tools. The exception is 2. above, state, control, events, function, and
input/output, which would be difficult to represent in a single diagram. Systems engi-
neering tools tend to neglect Structure 1.3, classification. Software engineering tools
tend to neglect the primary behavior views based on parallel function and to empha-
size state.

State Charts rather than state transition diagrams are included in Behavior 2.1
because state transition diagrams are limited in their ability to model real systems and
are not hierarchical. State charts have removed those limitations. In addition there is a
close relationship between Functional Flow Block Diagrams and State Charts.
325

Choosing Methodology
The IDEF notations have not been included in this discussion because they lack
some elements that are needed for executability.

In systems engineering intrinsic sequences of functions may be made concurrent
by pipelining, and intrinsically concurrent and independent functions may be serial-
ized for performance reasons. These transformations preserve what the system does
and optimize performance. They change the states, so that the state pictures must be
transformed also.

16.3.3 Equivalences - Statechart and Functional Flow Block Diagrams
Statecharts, (Harel 1987), have the advantages of being hierarchical, of having a well
defined relationship with functions, and of defining “and” states that reduce the prob-
lem of state explosion. State explosion occurs when one considers problems such as
five elevators serving thirty floors of a building. The total number of different simulta-
neous functions and conditions, up down, stopped, floor, for the system of five eleva-
tors is too large to serve as a useful representation of the problem. State charts have
been integrated into some software engineering methodologies, (Rumbaugh et. al.
1991).

As is generally the case with different languages, there will be certain expres-
sions which can be written in one of the languages with no equivalent in the other. In
spite of this fact, it is often the case that a significant span of modeling can be written
in both languages with translation between the two. This is the case for FFBD’s and
statecharts.

Statecharts represent states as shown in Figure 16-2., States in Statecharts.

Functions in FFBD’s correspond to Activities in Statecharts. Sequence in
FFBD’s results in sequential sates in statecharts. A selection in FFBD’s corresponds to
transition to states with corresponding activities in statecharts. Concurrency in
FFBD’s, “and”, corresponds to “and” states in statecharts. This can be shown by com-
paring the core technical steps in FFBD notation, Figure 16-3., FFBD View of Core
Technical Steps and Figure 16-4., Statechart View of Core Technical Steps.

Actions and Activity while in a State

State Name

entry / entry-action
do: Activity - A
event-1 / action 1
event-2 / action 2
...
exit / exit-action

Figure 16-2. States in State-
326

Choosing Methodology
1
Assess

Available
Information

AND

2
Define

Effectiveness
Measures

3
Create

Behavior
Model

4
Create

Structure
Model

5
Perform

Trade-Off
Analysis

6
Create

No Feasible
Solution

Feasible
Solution

& Test Plan
Build

Sequential

Figure 16-3. FFBD View of Core Technical Steps

State 1
do: Assess Available Information

State 2
do: Define Effectiveness Measures

State 3
do: Create Behavior Model

State 4
do: Create Structure MOdel

Superstate 234

State 5
do: Perform Trade-off Analysis

State 6
do: Create Sequential Build and Test Plan

Feasible
Solution

No Feasible
Solution

Figure 16-4. Statechart View of Core Technical Steps
327

Choosing Methodology
16.4 Some Methodology Problems and Differences

The fact that different methodologies can express what needs to be expressed in their
respective notations is not sufficient for them to be applied in the same engineering
discipline. Object Modeling Technique (OMT), for example, uses statecharts, data
flow diagrams, and the needed structural associations, (Rumbaugh et. al. 1991). How-
ever, OMT does not apply its process to a hierarchy of tiers to deal with domain anal-
ysis through component specification. The process of OMT omits three of the core
steps shown in Figure 16-3., FFBD View of Core Technical Steps. It does not formal-
ize core steps 2, 5, and 6. It does not combine statecharts and data flow diagrams into
an executable behavior.

Real-Time Object-Oriented Modeling (ROOT) also uses statecharts, (Selic,
Gullekson, and Ward 1994, 484-486). However, ROOT does not use the “and” state
construction which captures concurrency. Large complex systems have tremendous
concurrency at their top level. Best practice in systems engineering captures this con-
currency independently of structure, and then allocates it to different possible struc-
tures.

In selecting a methodology and tool support for modeling in systems engineer-
ing, it is essential that the language and notation can capture the systems engineering
information. It is equally important that the methodology contains all the steps needed
for executing best systems engineering practices.

One of the best practices which needs further comment is control of change
when the unexpected is discovered, as always happens in developing large complex
systems.

16.5 Discovery and the Change Control Process

In real applications the forward process is never followed without interruption
because customers discover that requirements must change, engineers discover techni-
cal problems, and management discovers need for funding and schedule changes.
These changes cause the engineering work to be interrupted at some step of the pro-
cess. They force an assessment of impact of the discovery, and work is resumed at
some different step in the process. Since the work is interrupted at any step and may
resume at any other step, these impacts cannot be described in a work flow diagram.

The real engineering work conditions can be rigorously described. The change
control process describes identification of the need for change, change impact assess-
ment, change authorization, change planning, change execution, and process improve-
ment based on analysis of change causes.

The word discovery is used here rather than error report or bug report because it
is very valuable to find these unknown issues as early as possible to minimize devel-
opment cost and to use the discoveries as the precious information that can improve
the process.
328

Choosing Methodology
Although all large programs experience imposed change and discovery, the pub-
lished life cycle models do not model the critically important change management
process. The Waterfall Life Cycle, (Royce 1987), does not show all the potential
feedback loops among phases because those loops can begin anywhere and end any-
where. The Spiral Model, (Boehm 1986), does not describe the criteria and issues
which are drivers for the successive product prototypes, releases, and partial builds.

16.5.1 The Change Control Process Description
The change process begins when someone discovers issues that demand a change in
the project. This discovery may be made at any level of authority. The discovery may
cause the project to interrupt work at any step of the engineering process and to go to
any other step.

The change process is shown in Figure Figure 16-5., FBBD View of the Change
Control Process. There are two major branches to the set of change process functions.
329

Choosing Methodology
 The upper branch describes the set of tasks which resolve the issues by making
changes to the analysis, design and implementation of the system being built.

The lower branch describes the set of tasks which report the changes, track the
changes to cause, and alter the engineering and manufacturing processes in use so that
the occurrence of a detected type of issue is reduced. The lower branch uses the occur-
rence of issue discovery to improve the engineering and manufacturing processes. Its
purpose is to reduce variance in the engineering and manufacturing processes. It is a
critical aspect of quality analysis. Too often he who discovers and reports issues early
is punished rather than rewarded, and the discoveries are not used to improve the busi-
ness.

And Collect
Issues

12.

Identify
Issues

2.

Review
Contract

6.

Discover
Issues

1.

Improve
Process

13.

3.
Close
Issues

4.
Review

Issues with
Customer

5.
Review
Issues
Internally

OR

11.
Execute
Contract

OR

7.

Change
Contract
Terms

8.

Close
Issues

IOr Execute
Permanent

9.
.

Execute
Emergency

10.
.

IOr OrData
Fix

Fix

with
Customer

Fix

OR OR

OR

Figure 16-5. FBBD View of the Change Control Process
330

Choosing Methodology
16.5.2 Change to the System, Upper Branch
Figure 16-5., FBBD View of the Change Control Process, shows that the first step for
system improvement, step 2., is to identify and analyze the issues. The analysis pro-
duces a description of the issue, a technical analysis of the impact of the issue, and a
category and priority for the issue. For large complex programs there will be many
open issues at any point of time. Subsequently any of three actions is taken:

• The issue is closed, step 3., or

• The issue is reviewed internally, step5., or

• The issue is reviewed, step 4. with the customer or with marketing if it affects
contract terms or if it impacts the acceptance of the product by customers in
the marketplace

Tasks 4. and 6. of Figure 16-5., FBBD View of the Change Control Process
imply not only review of a formal contract with a customer, but also review of the
less formal requirements and understanding between engineering and marketing
functions. This type of understanding is critical for commercial business which make
no sales if their new products do not fit the marketplace. In both situations it is essen-
tial to:

• Describe the issue to the customer/ marketing in language they understand.

• Analyze the impact of the issue with the customer/marketing.

• Listen to customers/marketing evaluate impact, which may be foreign to the
engineers, in their own language, which may be foreign to the engineers.

• Set priorities if there are multiple issues.

• Categorize the issues as unimportant, as not really affecting contract (hence
internal), or as affecting the contract.

For those issues that affect contract there is a contract review step 6., of the fig-
ure, that must detail a plan, a change proposal, to fix the issues with associated cost
and schedule. That plan must be reviewed by customers, marketing, and manage-
ment. There must be an agreement on how the issues are to be resolved. The proposed
changes and schedule may be accepted as a contract change, may be down graded as
an internal issue to be corrected without change to budget and schedule, or may be
judged not to be worth the time, risk, and effort to fix. Accordingly, the figure shows
branching from step 6. to steps 5., 7. and 8.

Internal review, step 5., is very similar to review with the customer, step 4. In
this case it is carried out within the project. The size of the project dictates how for-
mally such reviews are conducted and how the power of decision is allocated in the
organization. Very large projects with hundreds to thousands of workers require much
more formality and carefully assigned boards and responsibility than do small
projects with only a handful of staff.
331

Choosing Methodology
During the internal review, step 5, the project plans the permanent fix, step 9. In
some cases it is necessary to execute an emergency fix, step 10. Because this may
have to occur very rapidly, quick procedures may be put in place to make sure that the
identification of the issue and review/authority to make a fix, steps 2. and 5., occur
without delay. This is particularly true for modifications to systems requiring high
availability that are in use and in the maintenance phase.

If the contract terms must be changed, then system development continues based
on the change. the discovery of issues is continuous.

16.5.3 Process Improvement
The early discovery of issues reduces the risk of the project going over cost, missing
delivery time, and missing the market needs. These discoveries can be used to
improve the engineering and manufacturing processes so that fewer issues will be dis-
covered in the future. To accomplish this it is necessary to collect the issues data, step
12., and then analyze and use that information to define and implement process
improvements, step 13

 In step 12. it is necessary to collect and report the status of issues to understand
the frequency of testing/review, the frequency of issue discovery, and how well the
issue resolution process is working. These data also give a picture of how well the
project is proceeding toward a robust, validated integration. It is necessary to also
track the issues to their cause and collect that cause data. The cost of rectifying the
issue needs to be collect and associated with the cause of the issue. This information is
essential to prioritizing which parts of the engineering and manufacturing process
should be targeted for improvement to gain the most in efficiency of the work and
reduce cost and risk.

To implement process improvement it is necessary to identify process deficien-
cies, prioritize the importance of the deficiencies, create a plan to improve the process,
compare cost of the improvement with the cost of the issues, and then execute the cost
effective plans.

Real projects always make discoveries and encounter issues as described above.
A life cycle model which depicts what really happens on projects must include a
Change Control Process similar to the one just described. The implementation of a
Change Control Process may be very formal and complex for large projects or simple
and less formal for small projects.

Unless staff are rewarded for discovering and rectifying issues as early as possi-
ble, issues will be uncovered late when they are expensive. Unless the information
obtained as a result of the discoveries is used to improve the engineering and manu-
facturing processes, productivity will lag. Process improvement must be funded and
rewarded.
332

Choosing Methodology
16.6 Concluding Remarks

Systems engineering, as defined in the introduction, is an art. It requires training,
experience, and creativity to work efficiently through the large solution space of sys-
tems problems (a NP complete class of problems). The solutions are a near optimal
application of available resources and scientific understanding to meet the needs of
people.

The modeling described in this book is a technique that uses the laws of science
and logic to capture the system information once and rigorously, then to transform
and express it in the views needed by all the stakeholders to the system problem. The
transformations are essential because the stakeholders have very different back-
grounds, information needs, and training.

The modeling is not a substitute for training, experience, and creativity. If
applied blindly, the modeling will lead to unnecessarily large models which do not
converge rapidly to a near optimal solution. It is important to apply the modeling with
well developed heuristics like the technical systems engineering process of seven
core steps. The core steps must be applied creatively to discover the unexpected and
highly valuable solutions that have greatest value and lowest cost. They must be
applied creatively to find a solution rapidly by discarding engineering directions that
will not be useful, yet without missing the discovery of highly valuable solutions.
Discovery is the heart of the art of engineering.

Discovery is the finding of unexpected valuable solutions and also unexpected
and important issues. The forward work may be interrupted at any time by the discov-
ery of an issue that requires looping back to earlier stages of work for resolution.
Thus there is a change control process in parallel with the technical systems engineer-
ing process. It is critical. It is the feedback that stabilizes the process and ensures con-
vergence. Some recommendations:

• Institutionalize proven best practices.

• Use modeling as extensively as the applications, organization culture, manage-
ment support, and investment realities allow.

• Tailor a good systems engineering meta-process to a methodology for your
organization.

• Include both a technical engineering process and a change control process.

• Introduce new process, training, or tools first on projects of modest size and
relatively short duration to prove what works quickly. Then scale up.
333

Choosing Methodology
 Systems engineering requires a rich and broad perspective. It is a compound of
art, training, experience, creativity, scientific understanding, awareness of technology,
and discovery - applied to meet the needs of people individually, as nations and as a
world. Meeting needs is exciting. Discovery is exciting. The authors wish you exciting
careers.

16.7 Exercises

1. Describe the methodologies for capturing structure information. Are there elements
of structure which they fail to capture?

2. Describe the relationship of Data Flow Diagrams to State Charts.

3. Model the impact of a requirement the ATM system be able to process loan
requests.

4. How do the core steps minimize design change?

5. Describe the of change control on quality.

16.8 References

Blanchard, BF and W. Fabrycky, 1990. Systems Engineering and Analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Boehm, B.W. 1986. A spiral model of software development and enhancement, ACM
Sigsoft Engineering Notes, 11, no. 4, 22-42.

Harel, D. 1987. Statecharts: A visual formalism for complex systems, Science of Com-
puter Programming, 8, 231-274

Royce, W.W. 1987. Management of the development of large software systems: Con-
cepts and techniques, Proc. ICSE, 9, IEEE Computer Society Press.

Rumbaugh, James, Michael Blaha, William J. Premerlani, Frederick Eddy and Will-
iam Lorensen, William. 1991. Object-Oriented Modeling and Design, Engle-
wood Cliffs, N.J.: Prentice Hall

Selic, Ben, Garth Gullekson, and Paul T. Ward, 1994. Real-Time Object-Oriented
Modeling, New York,N.Y.: John Wiley & Sons Inc.
334

A Collection of Process and Information Models
A Collection of Process and Infor-
mation Models

For the convenience of readers, the major process and information models distributed
through out the book are collected here in one place for ready reference.

1. Part list or aggregation
2. Classification or generalization/specialization
3. Assembly or association
4. Context (next nearest neighbors) or association
5. Multiplicity or number
6. Classes of objects zero or more one or more annotation
7. Instances of objects
8. Attributes of objects - weight, size...
9. Functions or operations of objects

Operation

Class Name

Attribute

Class

Class Name

Attribute_name

Instance

 = value

Figure 17-1. Semantics and Symbols for Executable Structure
335

A Collection of Process and Information Models
Behavior

Input/Output
Max amount
Min amount
Current amount
Tolerance

Function
Duration
Generation
 rate
Consumption
 rate

Consume
 inputs
Generate
 outputs

ordered
generates &
consumes

Control
operation

Selection Sequence Concurrency

Parallel
function

State

Iteration
to a limit

2, all1+

Non-
triggering
I/O

Triggering
I/O

trigger

provide criteria forNon-
Condition
I/O

Condition
I/O

effect

condition

by

Figure 17-2. Information Model for Behavior
336

A Collection of Process and Information Models
Input/output

Max amount
Min amount
Current amount
Tolerance

Non-Triggering I/O Triggering I/O

Triggering Triggering

Transitory I/O

StockReplicaLocal I/O Global I/O

Stationary I/O

access

longevity

Material I/O Information I/O

Energy I/O

physical

nature

storage

content

effect

Non-Condition I/O

condition

Condition I/O

Figure 17-3. Information Model for Input/Output

with
Content

without
Content
337

A Collection of Process and Information Models
Map of
Behavior

to
Objects

Classification
(Class Tree)

Aggregation
Assembly

or

Interconnection

Object Model
(How)

Behavior
Model
(What)

Parallel Function,
I/O, Control

State, I/O, Functions
Events, Control

Views of Behavior

Projections
 of

Behavior

Projections
 of

Behavior

Function,
Control

Function,
I/O

State,
Control,
Events

Function,
I/O

Defines Interconnection, Interfaces

Encapsulates Functions

Represented By

Context Diagram

(Part Tree)

Views of Structure

Figure 17-4. Behavior and Structure Information Model
338

A Collection of Process and Information Models
Systems
Engineering
Meta-Process

Systems
Engineering
Methodology

Systems
Engineering
Tool

Systems
Engineering
Infrastructure

in
st

an
ti

at
e

no
ta

ti
on

s
&

 v
ie

w
s

au
to

m
at

es

embedded inSystems
Engineering
Views & Notations

generates

defines

Figure 17-5. Associations of Meta-Process, Methodology, Tools, and Infrastructure
339

A Collection of Process and Information Models
has a

Commercial
Acquisition
Process

has a

Government

Government
Acquisition
Process

Business

Product
Life
Cycle

use use

Systems Engineering
Technicalreports reports

supports and

specifications specifications
according toaccording to

Systems Engineering
Management

supports planning, review,

 specifies product

resolution of issues

Figure 17-6. Associations of Process, Product Life Cycle and Acquisition

Process

Process

Design Engineering
Discipline

provides detailed
specifications
340

A Collection of Process and Information Models
And Perform
Change

3.

Perform SE

4.

Iterate twice each tier,

Engineering Technical Tasks led and performed by systems engineering

Engineering Management Tasks, coordination, performed by systems engineering

Core Technical

Perform

1.

Perform
Review &

2.
.

Tasks performed by other engineering disciplines, manufacturing, and

And

Process

Perform
HW, SW, Human

5.

Component
Design and

Implementation

Replanning

Control

 Project
Planning

 with other specialties in concurrent team

with other engineering disciplines

field service planned and coordinated by systems engineering

Integrate

6.

Components
& Validate

over all tiers

Figure 17-7. Model for the System Engineering Process
341

A Collection of Process and Information Models
4.1
Assess

Available
Information

AND

4.2
Define

Effectiveness
Measures

4.3
Create

Behavior
Model

4.4
Create

Structure
Model

4.5
Perform

Trade-Off
Analysis

4.6
Create

No Feasible
Solution

Feasible

 Iterate to Find a Feasible Solution

Solution
& Test Plan

Build
Sequential

Figure 17-8. FFBD View for the System Engineering Core Technical Process

1.

2.

3.

4.

5. 6.

Initial
Context

Information

Sub-subject
Requirements

Subject
Architecture/Design Model,

PerformanceContext
Architecture/Design Model,

Requirements

Context
Implementation

Plan

Subject
Implementation

Plan

Analyze Context Analyze Subject

1.

2.

3.

4.

5. 6.

Figure 17-9. Sequential Application of Core Technical Process to Context and Subject

Model
342

A Collection of Process and Information Models
Gather
Heritage

Information

1.1

Gather
User

Information

1.2

Gather Text

Information

1.3

Gather Ops
Concept

Information

1.4

Requirements

And

Gather
Initial

Models

1.25

And

Incorporate
Heritage in

Requirements

1.7

Incorporate

Requirements

1.8

 User Inf in

And

Classify
Problems
& Define

1.12

And

1.
Assess

Available
Information

Plan
Issue

Resolution

1.14

Track
Issue

Resolution

1.15

Resolve

Issues

1.16

Classify
by

Use

1.17

Requirements

And

Define
Requirement
Validation

1.18

Generate

Database

1.19

Requirements
Review

Database

1.20

Requirements Correct
Requirements

Format

1.23

Correct
1.24

Requirements

And

Database

ID

Requirements

1.9

Reference
Incorporate

of Reference

1.10

Requirements

Issues

ID

Changes

1.5

Requirement
Trace to

Documents

1.6

Source ID
Requirements

1.11

Correct
1.27

Modeling
Database

Trace
1.13

Requirements
to Source

And

Generate

Scenarios

1.21

Ops Concept
Review

Scenarios

1.22

Ops Concept And

Analyze
1.26

Models with
core process

Figure 17-10. Functional Flow Block Diagram Decomposition of Core Step 1
343

A Collection of Process and Information Models
2.4
Identify

Stakeholder
Participants

2.5
Define

Effectiveness
Measures

2.7
Perform

Effectiveness
Measure

2.9
Define

Effectiveness
Measures

2.8
Generate

Effectiveness
Measures

2.6
Evaluate

Equations
Measure

Effectiveness
from

Attributes

from
Modeling

Survey from
Preferences

2.10
Execute

Behavior
System
Subject

2.11
Perform
Priority
Survey

2
Define

Effectiveness
Measures

2.1
Accept
Initial

Information

2.2
Accept

Behavior
Model

2.3
Accept

Structure
Model

And

Figure 17-11. FFBD View of Define Effectiveness Measures, Core Step

And And
344

A Collection of Process and Information Models
And

3.1
Accept

Effectiveness
Measures

3.2
Accept

Structure
Model

3.3
Accept

Available
Information

3.7
Validate

3.4

3.5
Order

3.6
Define

3.8
Evaluate

Functional
Interfaces

3.9
Output

Behavior

Functions

Input/Output

Behavior

Information

3
Create

Behavior
Model

Define
and Trace
Functions

Figure 17-12. FFBD View of Core Step

And

4.1
Accept

Effectiveness
Measures

4.2
Accept

Behavior
Model

4.3
Accept

Available
Information

4.7
Execute

4.4

4.5
Define

4.6
Allocate

4.8
Evaluate
System

Interfaces

4.9
Output

Alternative

Attributes

Functions

4
Create

Structure
Model

Define
Objects

System
Behavior

Designs or
Architectures

Figure 17-13. FFBD View of Core Step

And And
345

A Collection of Process and Information Models
AND

5.1
Accept

Effectiveness
Measures

5.2
Accept

Behavior
Model

5.10
Calculate
System

Performance

5.5
Measure
Attribute
Values

5.6
Simulate
Attribute
Values

5.7
Estimate
Attribute
Values

5.11
Calculate
System

Effectiveness

5.8
Perform

Effectiveness
Measure
Survey

5.9
Perform
Priority
Survey

AND

5.15
Choose

Alternative
Structure

5.14
Display
System

Effectiveness5
Perform

Trade-off
Analysis

Core Step 5

5.4
Select
Alternatives

5.3
Accept
Object
Model

5.12
Other
Alternatives

No

Yes

Figure 17-14. FFBD View of Core Step 5

5.13
Feasible
Alternative

to core
step 1

NoYes
346

A Collection of Process and Information Models
6.1
Develop
Resource
Profile

6.2
Develop

WBS

6.3
Develop

Precedence
Relationships

AND

6.4
Assign

Resources
to WBS Tasks

6.6
Assign
Task

Durations

Tasks

6.7
Examine
Load of

Resources

Not level

6.5

Develop
Milestones

6.8
Execute to

Assess Slack,
Critical Path

6.9
Assess

Business

6.10
Assess

Build & Test
Requirements

Realities
ANDAND

6.11

Publish
Plan

Level

Unsatisfactory

Satisfactory

AND

Figure 17-15. FFBD View of Core Step 6

6
Create

Build and
Test Plan

Core Step 6
347

A Collection of Process and Information Models
Implied

trace to
trace to

Functional Design

by use

Interface
Requirement

Derived
Requirement

trace to

Requirement

Initial Text
Requirement

Developed
Information

Requirement Requirement

Available

Initial
Information

Heritage
Information

Initial Text
Operations
Concept

User
Information

Initial

trace to

narrate

Information

Temporal
Performance

Non-temporal
Performance

Requirement Requirement

Adjudicated
Constraint

Issue

Resolution

trace to

trace to

trace to

trace to
Developed
Model

trace to

trace to

Figure 17-16. Information Model for Require-

extend

Model

Verifiable

AnalysisTest

InconsistentNot Verifiable Compound Redundant

Poorly
Written

TBD/TBR

by work to be done

Survey Inspection

Original

trace to

Reference
Requirement

point to

by origin

Requirement
348

A Collection of Process and Information Models
 Systems
Engineering

Marketing

Sales

Management Manufacturing

Product Stakeholders -

 Design Engineering Disciplines -
Hardware, Software, Operator,...

Suppliers

Purchasing

users, operators, buyers,
owners, customers

Engineering

Figure 17-17. Context for Systems Engineering
349

A Collection of Process and Information Models
Subject
System

Attributes

Subject
System

Component

Object
Interfaces

Structure
operations

Attributes

ranked by
compute

Cost

Effectiveness
Measure

Behavior

have

Design

compute

determine
alternatives

Priorities

Function

establish

selects

Equations

with

are arguments

of equations

have

built

Execution
Engine

executes
behavior

compute

describe
structure

from

Effectiveness
Measure

Effectiveness
Measure

from
Attributes

Effectiveness
Measure

from
Modeling

Effectiveness
Measure

from
Preferences

Priority
Survey

generate

Values

have

Effectiveness
Measure
Survey

generate

Figure 17-18. Information Model for Create Effectiveness Measures

1+

Estimation

Simulation

Measurement

provides

Value Computation
350

A Collection of Process and Information Models
connects to

Structure
operations

define behavior
hierarchy

trace to

trace to

trace to

trace to

limit choice
of I/O

Function
generate &
consume

ordered by

Control
operations

respond
according
to

connects

excite
according
to

interconnection defines
subject system context,
interfaces

composed

Behavior

classified by use

to

allocated to Components

Interface

Response
threads

Attributes

External
behavior

External
Systems

Subject
System

Attributes

Internal
behavior

Adjudicated
constraint

Design

Issue

Resolution

Text
Requirement

Text
operations

concept

Text
Information

Scenarios

has Object
Role

Object

of

define
subject

structure

in Structure Model

defined by allocation of
behavior to components

Input/Output

Interface
requirement

Functional
requirement

Temporal
performance
requirement

Non-temporal
performance
requirement

trace to budget to

limit choice of functions

Behavior
Information

Context
Information

Component
Input/
Output

kinds of roles

Figure 17-19. Information Model for Text Require-
ments, Behavior, and Context

1+

1+

1+
respond to

1+

1+

1+1+

1+
1+

1+ 1+

1+1+

< trace to

2+ 2, all

2+
351

A Collection of Process and Information Models
connects to

Structure
operations

define behavior
hierarchy

trace to

trace to

trace to

trace to

respond
according
to

connects

excite
according
to

interconnection defines
subject system context,
interfaces

composed

Behavior

classified by use

to

Interface

Response
threads

Attributes

External
behavior

External
Systems

Subject
System

Attributes

Internal
behavior

Adjudicated
constraint

Design

Issue

Resolution

Text
Requirement

Text
operations

concept

Scenarios

has Object
Role

Object

of

define
subject

structure

defined by allocation of
behavior to components

Interface
requirement

Functional
requirement

Temporal
performance
requirement

Non-temporal
performance
requirement

trace to budget to

Component

Input/
Output

Figure 17-20. Information Model for Text Requirements, Structure, and Context

1+

1+
1+

respond to

1+

1+

1+1+

1+
1+

1+

 trace to

2+

Component
Interface

1+

defined by allocation
allocated to

Attributes

budget to

associated
through
allocation
of functions
to Components

have trace to

2+
352

A Collection of Process and Information Models
Subject
System

Attributes

Subject
System

Object

Object
Interfaces

Structure
operations

Attributes

ranked by

computed

Estimation

Cost

Effectiveness
Measure

Simulation

Measurement

behavior

have

Design

determine
alternatives

Priority

Function

establish

selects

Equations

with

have

Execution
Engine

executes
behavior

compute

describe
structure

Effectiveness
Measures

Effectiveness
Measures

from
Attributes

Effectiveness
Measures

from
Modeling

Effectiveness
Measures

from
Preferences

Priority
Survey

generate

Values

have

provides

Effectiveness
Measure
Survey

generates

Temporal
performance
requirement

Non-temporal
performance
requirement

Time
Lines

Non-temporal
performance
equations

1+

1+

generate

validate

computed
with

Figure 17-21. Information Model for Perform Trade-off Analysis

Value Computation

arguments for
arguments for
353

A Collection of Process and Information Models
Components

Milestone Cost
Schedule

Tracking
and
Reporting Business

Realities

orders the
build &
test ofmonitored

Risk

Show
end-to-end
response

Response
Threads

Validation
of Progress

Funding
Rate

Time to
Market

Work
Breakdown
Structure

Time
Schedule

Work
Package

Parts List
(aggregation
of objects)

Sequential
Build & Test
Plan

Subject
System

Attributes

Subject
System

assembled,
tested,
validated

Technical CostSchedule
RiskRiskRisk

Competition

behavior

accounts for

by

Resource

allocates

Risk

Risk establishes

assigned to

Figure 17-22. Information Model for Core Step 6

Survey
354

A Collection of Process and Information Models
Collection of
Businesses using
Subject System

Business using
Subject System

Subject System

Sub-systems of
Subject System

Components

Analysis of

Analysis of

Analysis of

Analysis of

Analysis of

analyzes

analyzes

analyzes

analyzes

analyzes

Core Technical
Process

uses

uses

uses

uses

uses

Synthesis

Decomposition

Figure 17-23. Tiers of Analysis and Decomposition/Synthesis

Domain Tier

Concept Tier

System Tier

Sub-system

Component Tier
355

	Engineering Complex Systems
	Table of Contents
	List of Figures
	Introduction
	1.1 The Engineering of Complex Systems Based on Models
	1.1.1 This Book
	1.1.2 Systems Engineering as a Discipline

	1.2 Importance of Engineering Complex Systems
	1.2.1 Global Economic and Technical Change
	Span of National Control and Investment in National Advantage
	Importance of Systems Engineering

	1.3 The Gap
	1.3.1 Closing the Gap
	Prior Experience in Other Disciplines
	Closing the Gap in the Engineering of Complex Systems
	Purposes of Modeling

	1.4 Definitions
	1.4.1 Science
	1.4.2 Engineering
	1.4.3 Model
	1.4.4 System
	1.4.5 Behavior
	1.4.6 Structure
	1.4.7 Context
	1.4.8 Optimization
	Context Optimization
	System Optimization

	1.5 Basic Abstractions
	1.5.1 Basic Abstractions Used with Structure
	Things or Objects
	Parts Tree or Aggregation
	Interconnection
	Number
	Classification
	Association

	1.5.2 Basic Abstractions used with Behavior

	1.6 Organization of this Book
	1.6.1 Principles of Modeling
	1.6.2 An Example of Modeling

	1.7 Summary
	1.8 Exercises
	1.9 References

	Basics of Structure
	2.1 Introduction to Structure
	2.1.1 Structure and Behavior
	2.1.2 Basic Views of Structure
	2.1.3 Executable Models of Structure

	2.2 Example - Modeling a Pocket Knife
	2.3 Objects and Classes
	2.3.1 Definition
	2.3.2 Modeling Objects in OMT
	Class Name
	Class Attributes
	Class Functions
	Instances

	2.3.3 Example - Pocket Knife, Object Class Definition
	2.3.4 Example - Pocket Knife Instances

	2.4 Aggregation
	2.4.1 Modeling Aggregation in OMT
	2.4.2 Example - Pocket Knife with Aggregation

	2.5 Cardinallity
	2.5.1 Cardinallity in OMT
	2.5.2 Example

	2.6 Classification of Objects
	2.6.1 Classification in OMT
	2.6.2 Example - Classification of Tools

	2.7 Interconnection of Objects
	2.7.1 Definition
	Roles and Interconnection
	Input/Output and Interconnection

	2.7.2 Interconnection in OMT
	2.7.3 Example - Multi-Tool Pocket Knife Context
	2.7.4 Example - Multi-Tool Assembly Interconnection

	2.8 Roles
	2.9 Allocation of Functions to Objects
	2.10 Summary
	2.11 Exercises
	2.12 References

	Basics of Behavior
	3.1 Introduction to Behavior
	3.1.1 Elements of Behavior
	3.1.2 Behavior in the System Context
	3.1.3 This Chapter

	3.2 Modeling of Behavior
	3.3 Functional Flow Block Diagrams
	3.3.1 Functions
	3.3.2 Ordering
	Sequence
	Concurrency
	Selection
	Iteration

	3.3.3 Example, Pocket Knife
	3.3.4 Hierarchy
	Example, Behavior Hierarchy

	3.3.5 Input and Output
	Behavior Diagrams

	3.4 Data Flow Diagrams
	3.5 Representation of Behavior as State
	Statecharts

	3.6 Pocket Knife Example, Summary
	3.7 Information Model for Behavior
	3.7.1 Behavior
	3.7.2 Input/Output
	3.7.3 Function
	3.7.4 Control Operations
	3.7.5 In Summary

	3.8 Information Model for Input/Output
	3.9 Relationship of Behavior and Structure
	3.9.1 Structure Models
	3.9.2 Behavior Models

	3.10 Models and Text for Requirements/Specifications
	3.11 Summary for Behavior
	3.12 Exercises
	3.13 References

	Core Technical Process
	4.1 Process
	4.1.1 Process, Methodology, and Tools
	4.1.2 Product Life Cycle, Acquisition, Systems Engineering Process
	4.1.3 The Systems Engineering Process Model
	Systems Engineering Management Tasks
	Systems Engineering Technical Tasks

	4.2 The Core Technical Process
	4.2.1 The Six Steps in the Core Technical Process
	Assess Available Information
	Define Effectiveness Measures
	Create Behavior Model
	Create Structure Model
	Perform Trade-Off Analysis
	Iterate to Find a Feasible Solution
	Create Implementation, Sequential Build, and Test Plan
	Application at Each Tier.

	4.3 Hierarchy
	4.3.1 Small Systems vs. Large Systems
	4.3.2 Tiers of Hierarchy
	4.3.3 Hierarchy, Waterfall, Top Down Development

	4.4 Re-Engineering
	4.5 Behavior Model for the Core Technical Process
	4.6 Union of Best Practice with Modeling
	4.7 Exercises
	4.8 References

	Assess Available Information
	5.1 What Core Step 1 Is
	5.2 A Requirements Taxonomy
	5.2.1 Classification by Origin
	5.2.2 Classification by the Work Needed to be Done
	5.2.3 Classification by Their Use

	5.3 A Behavior for Assess Available Information
	5.3.1 Decomposition of the Behavior of Core Step 1

	5.4 Summary
	5.5 Exercises
	5.6 References

	Define Effectiveness Measures
	6.1 What Core Step 2 Is
	6.2 Importance of Effectiveness Measures
	6.3 An Industrial Example
	6.4 How Effectiveness Measures Drive the Solution
	6.4.1 Problem: System 1
	6.4.2 Problem: System 2
	6.4.3 Problem: System 3

	6.5 Types of Effectiveness Measures
	6.6 Priorities among Effectiveness Measures
	6.7 Information Model for Core Step 2.
	6.8 Summary
	6.9 Exercises
	6.10 References

	Create Behavior Model
	7.1 What Core Step 3 Is
	7.2 How to Create Behavior Models
	7.3 Example of Behavior Development - Bottling Wine
	7.3.1 External System Behavior
	7.3.2 Temporal Performance Requirements
	7.3.3 Non-temporal Performance Requirements
	7.3.4 Operations Concept for System Context
	7.3.5 Behavior of the Winemaker
	7.3.6 Effectiveness Measures
	7.3.7 Intrinsic Behavior
	Top Level Behavior
	Expanding Gathering Supplies
	Expanding Produce the Bottles
	Putting it All Together

	7.3.8 Emergent Behavior
	7.3.9 Completing the Behavior - Adding Inputs and Outputs
	7.3.10 Views of Behavior
	7.3.11 Behavior, Structure, and Effectiveness Measures

	7.4 Scenarios and Response Threads as Paths through Behavior
	7.5 Behavior, Context and Traceability, an Information Model
	7.5.1 Explanation of the Context Region
	7.5.2 Explanation of the Behavior Region
	7.5.3 Explanation of Traceability and Budgeting
	Functional Requirement Traceability
	Temporal Performance Requirement Budgeting
	Non-temporal Performance Requirement Traceability
	Design and Traceability
	Interface Requirements

	7.6 Pitfalls in Developing Scenarios and Threads
	7.7 Summary
	7.8 Exercises
	7.9 References

	Create Structure Model
	8.1 What Core Step 4 Is
	8.2 Creating Structure Models
	8.3 Example of Structure Development - Bottling Wine
	8.3.1 Requirements Review
	Effectiveness Measures
	Non-temporal Performance Requirements

	8.3.2 The First Parts Selection, Define Objects
	8.3.3 The First Parts List or Aggregation
	8.3.4 Allocate Functions
	Time Estimates for a Manual Bottling System
	Case 1. Allocation to One Person
	Case 2. Allocation to Three People
	The Simplest Allocation, Case 3
	Allocation in the Context of the Problem, Case 4

	8.3.5 Interfaces Among People

	8.4 Information Model for Structure
	8.5 Architecture and Design
	8.6 Architecture, Applications, Effectiveness Measures and Reuse
	8.6.1 Design Simplification with Architecture

	8.7 Summary
	8.8 Exercise
	8.9 References

	Perform Trade-Off Analysis
	9.1 What Core Step 5 Is
	9.2 Trade-off
	9.2.1 Values of Attributes
	Measurement.
	Simulation.
	Estimation.

	9.2.2 Survey
	9.2.3 Calculate System Performance
	9.2.4 Iterate
	9.2.5 Calculate System Effectiveness
	9.2.6 Other Alternatives
	9.2.7 Display System Effectiveness
	9.2.8 Choose Alternative Structure

	9.3 Information Model
	9.4 The Problem of Tool Integration
	9.4.1 Prerequisites for Tool Integration
	9.4.2 A Comparison with Mechanical Engineering Evolution
	Rigorous Capture of Details
	Automation
	Semi-automated Search of the System Design Space

	9.5 Exercises
	9.6 References

	Create Build and Test Plan
	10.1 What Core Step 6 Is
	10.2 Creating a Plan
	10.2.1 Network Scheduling Approaches
	Program Evaluation and Review Technique (PERT)
	Critical Path Method (CPM)

	10.2.2 Resource Allocation

	10.3 Behavior Model for Core Step 6
	10.4 Information Model for Core Step 6
	10.5 A Check-off List for Planning Plan
	A Check-off List

	10.6 Exercises
	10.7 References

	Concept Analysis
	11.1 What Concept Analysis Is
	11.2 Applying the Core Technical Process to Concept Analysis
	11.3 Core Steps Applied to the Context of the Bank with the ATM System
	11.3.1 Assess Available Information
	Initial Information for an Automated Teller Machine System
	Requirements Extracted from the Initial Information

	11.3.2 The Three Concurrent Core Steps, 2, 3, and 4
	Effectiveness Measures for the Bank
	Context Structure for Bank
	Effectiveness Measures for the Bank
	Define the Structure for Individual Customer
	Context Behavior, the Individual Customer

	11.4 Core Steps Applied to the Bank with the ATM System
	11.4.1 Structure of the Bank with the System, Core Step 4.5
	11.4.2 Effectiveness Measure For Bank with the System, Core Step 2
	11.4.3 Behavior of the Bank with the ATM System, Core Step 3
	11.4.4 Trade-off Analysis of the Bank with the ATM System, Core Step 5
	11.4.5 Create the Sequential Build and Test Plan, Core Step 6

	11.5 Summary
	11.6 Exercises
	11.7 References

	System Analysis
	12.1 What System Analysis Is
	12.2 Core Steps Applied to the Context of the ATM System
	12.2.1 Assess Available Information, Core Step 1
	12.2.2 The Three Concurrent Core Steps, 2, 3, and 4
	12.2.3 Effectiveness Measure For Bank with the System, Core Step 2
	12.2.4 Structure of the Context of the ATM System, Core Step 5
	12.2.5 Effectiveness Measure for the ATM System Context, Core Step 2
	12.2.6 Behavior of the Thief in the Context of the ATM System, Core Step 3

	12.3 Core Steps Applied to the ATM System
	12.3.1 Structure of the ATM System, Core Step 5
	12.3.2 Behavior of the ATM System, Core Step 3
	Responses and Attributes to Thwart the Thief

	12.3.3 Structure Implications of the Theft Scenarios, Core Step 4
	12.3.4 Response of ATM Machine to ATM Customer
	12.3.5 Structure of the ATM Machine and Related Objects, Core Step 5

	12.4 Exercises
	12.5 References

	Sub-system Analysis
	13.1 What Sub-system Analysis Is
	13.2 Core Steps Applied to the Context of the ATM Machine
	Overall View of System Behavior
	Response to Thief
	Impact of Installation and Field Service

	13.3 Core Steps Applied to the ATM Machine
	13.3.1 Effectiveness Measure for the ATM machine, Core Step 2
	13.3.2 Structure of the ATM Machines, Core Step 5
	Attributes and Allocation of Behavior
	Hardware Interconnection
	Software Components

	13.4 Exercises
	13.5 References

	Hand-off
	14.1 What Hand-off Is
	14.2 Context For Handoff
	14.3 ATM Handoff to User Interface
	14.3.1 Assess Available Information
	Models
	Effectiveness Measures
	Domain Knowledge

	14.3.2 Parallel Design Steps

	14.4 Separation to Database
	14.4.1 Available Database Information
	14.4.2 Behavior and Structure of ATM database
	Behavior
	Structure

	14.5 Hand-off
	14.6 Exercises
	14.7 References

	Interface with Acquisition and Management
	15.1 Introduction
	15.2 Introduction of Modeling into Business Cultures
	15.3 Commercial Product/Service Development Businesses
	15.4 Modeling and Aerospace Acquisition
	15.4.1 Relativity of Systems, Products
	15.4.2 A Core Technical Systems Engineering Process
	15.4.3 Requirements Come from the Tier Above
	15.4.4 P1220 Systems Engineering Process

	15.5 Summary
	15.6 Exercises
	15.7 References

	Choosing Methodology
	16.1 Tailoring Meta-process to Methodology
	16.2 Best Practices and Views of Information
	16.3 Views of Information in Systems Engineering
	16.3.1 Possible Views of Structure
	16.3.2 Possible Views of Behavior
	Views of Behavior and Notations

	16.3.3 Equivalences - Statechart and Functional Flow Block Diagrams

	16.4 Some Methodology Problems and Differences
	16.5 Discovery and the Change Control Process
	16.5.1 The Change Control Process Description
	16.5.2 Change to the System, Upper Branch
	16.5.3 Process Improvement

	16.6 Concluding Remarks
	16.7 Exercises
	16.8 References

	A Collection of Process and Information Models

